Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 434-436 
    ISSN: 1432-0789
    Keywords: Key words Carbon-13 ; nitrogen-15 tracers ; Soil labelling ; Soil organic matter ; Soil reclamation ; Wildfires
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The restoration of the C and N cycles in the soil-plant system is a basic step for the reclamation of burnt soils. To evaluate accurately the efficacy of restoration techniques, it is necessary to use isotopic tracers and, therefore, a 13C-, 15N-labelled burnt soil should be made available. The present paper describes a technique for obtaining a 13C-, 15N-labelled burnt soil by burning a labelled forest soil in the laboratory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 20 (1995), S. 237-242 
    ISSN: 1432-0789
    Keywords: Mineralization capacity ; Nitrogen ; Soil incubation ; Time of incubation ; Temperate humid-zone soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The N mineralization rate in 11 soils was studied by aerobic incubation at 28°C and at a moisture content of 75% of field capacity for 2 weeks (short term) and 6 weeks (medium term). Relationships between the N mineralization indices for each period were evaluated. Ammonification largely predominated during the first 2 weeks of incubation, whereas nitrification was the predominant process between weeks 2 and 6. The net N mineralized in the different soils varied from 0 to 2.85% of the organic N after 2 weeks of incubation and from 0.32 to 3.36% of the organic N after 6 weeks of incubation, the mean values for each period being 0.82 and 1.51% of the organic N, respectively. The quantities of NH inf4 sup+ -N, NO inf3 sup- -N, and total inorganic N produced and the percentage of organic N mineralized after 2 weeks of incubation were highly and positively correlated with the coresponding values after 6 weeks of incubation. These results showed that either length of incubation could be used to determine the potential N mineralization capacity of the soils. Information obtained from two incubation periods was largely supplementary for the kinetic study of N mineralization, ammonification, and nitrification; therefore a medium-term incubation with intermediate measurements of N mineralization over a short term may be more useful than a single measurement using either of the two incubation periods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 32 (2000), S. 494-499 
    ISSN: 1432-0789
    Keywords: Keywords Heated soils ; Nitrogen-15 ; Poultry manure ; Soil reclamation ; Wildfire
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Poultry manure (PM) efficacy to improve burnt soil revegetation was evaluated to determine the lowest effective and the optimum dose for burnt soil reclamation. A 15N-labelled forest soil (LS) was used to set up six treatments: LS, laboratory burnt LS (BLS) and BLS with PM dose equivalent to 1 (BLS+PM1), 2 (BLS+PM2), 4 (BLS+PM4) and 8 Mg dry PM ha–1 (BLS+PM8). Ryegrass was sown in all treatments and grown for 3 months in a greenhouse. At harvesting, in the BLS treatment: (1) ryegrass yield was very low and the shoot:root ratio was high; (2) ryegrass-N content was closer to that of metabolic tissues or young plants than to structural tissues or mature plants; (3) most of the available endogenous N still remained in the soil inorganic N pool. These results suggested that, although seed germinated normally, ryegrass growth was stopped at an early developmental stage, producing small and weak plants unable to protect the burnt soil against erosion and to exploit the post-fire pulse of available N which, consequently, could be lost. The addition of PM to BLS increased the ryegrass yield from the lowest dose (BLS≈LS〈BLS+PM1〈 BLS+PM2〈BLS+PM4〈BLS+PM8;P〈0.05), the increase of the phytomass yield per Mg of added PM varying as follows: PM8〈PM1≤PM4〈PM2. The uptake of soil-available N by the ryegrass was greatly enhanced in all manured treatments, but the contribution of PM-N to plant nutrition was only significant in BLS+PM4 and BLS+PM8 treatments. The lowest effective PM dose was PM1 and the optimum cost-to-benefit ratio treatments were PM2 and PM4.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Potentially mineralizable N ; Parent material ; Soil management ; Soil characteristics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract N mineralization capacity and its main controlling factors were studied in a large variety (n=112) of native (forest, bush) and agricultural (pasture, cultivated) soils from several climatic zones in Spain. The available inorganic N content, net N mineralization, and net N mineralization rate were determined after 6 weeks of aerobic incubation. NH inf4 sup+ −N largely predominated over NO inf3 sup- -N (ratio near 10:1) except in some agricultural soils. Net N mineralization predominated (83% of soils) over net N immobilization, which was more frequent in agricultural soils (25%) than in native soils (9%). In forest soils, both net N mineralization and the net N mineralization rate were significantly higher than in the other soil groups. The net N mineralization rate of pasture and cultivated soils was similar to that of bush soils, but available inorganic N was lower. The net N mineralization rate decreased in the order: soils over acid rocks〉soils over sediments〉soils over basic rocks or limestone; moreover, the highest net N mineralization and available inorganic N were found in soils over acid rocks. The highest N mineralization was found in soils with low C and N contents, particularly in the native soils, in which N mineralization increased as the C:N ratio increased. N mineralization was higher in soils with a low pH and base saturation than in soils with high pH and base saturation values, which sometimes favoured N immobilization. Soils with an Al gel content of 〉1% showed lower net N mineralization rates than soils with Al gel contents of 〈1%, although net N mineralization and available inorganic N did not differ between these groups. The net N mineralization rate in silty soils was significantly lower than in sandy and clayey soils, although soil texture only explained a low proportion of the differences in N mineralization between soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0789
    Keywords: Key words Heated soils ; Nitrogen-15 ; Organic wastes ; Phytotoxic compounds ; Soil reclamation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The efficacy of three abundant organic wastes: poultry manure (PM), cattle slurry (CS) and sewage sludge (SS) for the reclamation of burnt soils was evaluated. A forest soil, previously furnace-heated in order to simulate exposure to a high-intensity wildfire, was labelled with nitrogen-15 (15N) to evaluate the contribution of N derived from the organic waste to the burnt soil and vegetation. Four treatments were performed with the heated 15N-labelled soil: an unamended control soil (S) and three waste amended soils (S+PM, S+CS and S+SS) at a dose waste of 167mg total N kg–1 soil. Lolium perenne was grown in all the pots for 3 months. In each treatment the phytomass produced and its N content decreased significantly in the following order of treatments: S+PM S+CS 〉 S+SS S. The percentage of plant N derived from the waste was similar in the S+PM (22.8%) and S+CS (24.0%) treatments, but significantly lower in the S+SS treatment (16.5%). At the end of the 3 month experimental period, the available N reserves (phytomass N+soil inorganic N) in the control soil accounted for 51.5–71.5% of those in the S+PM, S+CS and S+SS treatments, whereas the yield of the plants was only 13.4–29.8% of that in the manured soils. These results demonstrated the importance of the addition of organic wastes, particularly PM, for the recovery of the vegetation cover and for the stabilization of the soil ash layer. They also showed that the level of N was not the main controlling factor of plant growth in the control soil, which, moreover, did not show evidence of a shortage of macronutrients, i.e. phosphorus, potassium, calcium or magnesium. It is hypothesized that, as occurs in heat-sterilized soils, phytomass production in the control-heated soil could have been inhibited by the heat-induced production of phytotoxic compounds, their negative effects being microbially or chemically suppressed by the addition of organic wastes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0789
    Keywords: Key words Potentially mineralizable N ; Parent material ; Soil management ; Soil characteristics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract N mineralization capacity and its main controlling factors were studied in a large variety (n=112) of native (forest, bush) and agricultural (pasture, cultivated) soils from several climatic zones in Spain. The available inorganic N content, net N mineralization, and net N mineralization rate were determined after 6 weeks of aerobic incubation. NH4 +-N largely predominated over NO3 –-N (ratio near 10:1) except in some agricultural soils. Net N mineralization predominated (83% of soils) over net N immobilization, which was more frequent in agricultural soils (25%) than in native soils (9%). In forest soils, both net N mineralization and the net N mineralization rate were significantly higher than in the other soil groups. The net N mineralization rate of pasture and cultivated soils was similar to that of bush soils, but available inorganic N was lower. The net N mineralization rate decreased in the order: soils over acid rocks〉soils over sediments〉soils over basic rocks or limestone; moreover, the highest net N mineralization and available inorganic N were found in soils over acid rocks. The highest N mineralization was found in soils with low C and N contents, particularly in the native soils, in which N mineralization increased as the C:N ratio increased. N mineralization was higher in soils with a low pH and base saturation than in soils with high pH and base saturation values, which sometimes favoured N immobilization. Soils with an Al gel content of 〉1% showed lower net N mineralization rates than soils with Al gel contents of 〈1%, although net N mineralization and available inorganic N did not differ between these groups. The net N mineralization rate in silty soils was significantly lower than in sandy and clayey soils, although soil texture only explained a low proportion of the differences in N mineralization between soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5036
    Keywords: biological method ; chemical method ; mineralization potential ; nitrogen ; soil incubation ; temperate humid-zone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The potentially mineralizable organic N of 33 different soils was estimated by a chemical test (hot extraction with 2N KCl) and the values compared with those previously obtained by a biological method (aerobic incubation in the laboratory). On average, the organic N solubilized by the chemical procedure was significantly lower than that mineralized by a two weeks aerobic incubation for all the soils as a whole. The same was true for soils developed over acid rocks and over sediments. However, the values obtained for the soils developed over limestone and basic rocks were similar by both methods. The values obtained by both methods were not significantly correlated neither when considering all soils together nor when considering different groups according to soil management or parent material. Significant correlations between both methods were only found when the soils were separated into two groups according to their organic N content: soils with less than 400 mg N 100 g−1 soil and soils with more than 400 mg N 100 g−1 soil. The organic N solubilized by the chemical procedure was significantly correlated with the hexosamine-N content; however, it was not correlated with the factors that control the biological mineralization of the organic N, except with the soluble Al content. Therefore, the chemical extraction did not seem to address the biologically active N pool in a selective way.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: mineralization capacity ; nitrogen ; principal components analysis ; soil incubation ; temperate humid zone ; soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The N mineralization capacity of 41 temperate humid-zone soils of NW Spain was measured by aerobic incubation for 15 days at 28°C and 75% of field capacity. The main soil factors affecting organic N dynamics were identified by principal components analysis. Ammonification predominated over nitrification in almost all soils. The mean net N mineralization rate was 1.63% of the organic N content, and varied according to soil parent materials as follows: soils on basic and ultrabasic rocks 〈 soils over acid metamorphic rocks 〈 soils developed over sediments 〈 soils over acid igneous rocks 〈 soils on limestone. The N mineralization capacity was lower in natural soils than in cropped soils or pastures. The accumulation of organic matter (C and N) seems to be due to poor mineralization which was caused, in decreasing order of importance, by high exchangeable H-ion levels, high Al and Fe gel contents and, to a lesser extent (though more markedly in cropped soils), by silty clay texture and exchangeable Al ions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...