Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Retinal neurons are coupled by electrical synapses that have been studied extensively in situ and in isolated cell pairs. Although many unique gating properties have been identified, the connexin composition of retinal gap junctions is not well defined. We have functionally characterized connexin35 (Cx35), a recently cloned connexin belonging to the γ subgroup expressed in the skate retina, and compared its biophysical properties with those obtained from electrically coupled retinal cells. Injection of Cx35 RNA into pairs of Xenopus oocytes induced intercellular conductances that were voltage-gated at transjunctional potentials ≥ 60 mV, and that were also closed by intracellular acidification. In contrast, Cx35 was unable to functionally interact with rodent connexins from the α or β subfamilies. Voltage-activated hemichannel currents were also observed in single oocytes expressing Cx35, and superfusing these oocytes with medium containing 100 μm quinine resulted in a 1.8-fold increase in the magnitude of the outward currents, but did not change the threshold of voltage activation (membrane potential = +20 mV). Cx35 intercellular channels between paired oocytes were insensitive to quinine treatment. Both hemichannel activity and its modulation by quinine were seen previously in recordings from isolated skate horizontal cells. Voltage-activated currents of Cx46 hemichannels were also enhanced 1.6-fold following quinine treatment, whereas Cx43-injected oocytes showed no hemichannel activity in the presence, or absence, of quinine. Although the cellular localization of Cx35 is unknown, the functional characteristics of Cx35 in Xenopus oocytes are consistent with the hemichannel and intercellular channel properties of skate horizontal cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] A genetic polymorphism in the human gene encoding connexin37 (CX37, encoded by GJA4, also known as CX37) has been reported as a potential prognostic marker for atherosclerosis. The expression of this gap-junction protein is altered in mouse and human atherosclerotic lesions: it disappears from the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 385 (1997), S. 525-529 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Immunocytochemistry was performed on frozen sections of mouse ovaries to investigate the composition of oocyte-granulosa cell gap junctions. Antibodies specific for connexins (Cx) 37,40 and 43 were used because their messenger RNAs had been previously detected in ovary6"8. Anti-Cx37 antibodies9 ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 371 (1994), S. 208-209 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR - Connexins (Cx) oligomerize into channels (called connexons) that span a single plasma membrane. Connexons in adjacent cells align to form complete intercellular channels that are sensitive to the voltage difference between the cytoplasms of the coupled cells. Because the intercellular channel ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1424
    Keywords: gap junctions ; connexin43 ; lens epithelium ; molecular cloning ; protein phosphorylation ; intercellular communication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Lens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 116 (1990), S. 187-194 
    ISSN: 1432-1424
    Keywords: gap junctions ; connexin ; intercellular communication ; molecular cloning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 147 (1976), S. 281-301 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The auditory organ of the alligator lizard has been investigated with the transmission electron microscope using methods which distinguish between tight and gap junctions. There is a continuous zone of tight junctions located near the endolymphatic surface of the organ forming a boundary between the endolymph in scala media and the interstitial spaces between the cells. No such tight junctions were observed between the perilymph of scala tympani and the interstitial fluid within the organ. Small gap junctions occur between hair cells and supporting cells and large gap junctions occur between adjacent supporting cells. The locations of the tight junctions suggest that the composition of the intercellular fluid in the receptor organ is probably more like perilymph than like endolymph. The presence of gap junctions between hair cells and supporting cells provides a possible morphological basis for the occurrence of intracellular responses to sound in supporting cells, and for electric coupling of receptor cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 18 (1996), S. 709-718 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Most cells communicate with their immediate neighbors through the exchange of cytosolic molecules such as ions, second messengers and small metabolites. This activity is made possible by clusters of intercellular channels called gap junctions, which connect adjacent cells. In terms of molecular architecture, intercellular channels consist of two channels, called connexons, which interact to span the plasma membranes of two adjacent cells and directly join the cytoplasm of one cell to another. Connexons are made of structural proteins named connexins, which compose a multigene family. Connexin channels participate in the regulation of signaling between developing and differentiated cell types, and recently there have been some unexpected findings. First, unique ionic- and size-selectivities are determined by each connexin; second, the establishment of intercellular communication is defined by the expression of compatible connexins; third, the discovery of connexin mutations associated with human diseases and the study of knockout mice have illustrated the vital role of cell-cell communication in a diverse array of tissue functions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 17 (1995), S. 744-744 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...