Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 5 (1933), S. 357-357 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 18 (1926), S. 1075-1076 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 8 (1969), S. 1355-1360 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 47 (1925), S. 1045-1046 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 253 (1975), S. 419-420 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The primary physical factor responsible for initiating the stirring of the atmosphere into its ever changing assembly of the cyclonic waves and anticyclonic systems is the meridional distribution of solar radiation, 5(6), where 0 is the latitude. The response of the atmosphere to a given 5(0) and ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 9 (1994), S. 195-212 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A simulation of the possible consequences of a doubling of the CO2 content of the atmosphere has been performed with a low resolution global climatic model. The model included the diurnal and seasonal cycles, computed sea ice amount and cloud cover, and used implied oceanic heat fluxes to represent transport processes in the oceans. A highly responsive 2-layer soil moisture formulation was also incorporated. Twenty year equilibrated simulations for control (1 × CO2) and greenhouse (2 × CO2) conditions were generated. The major emphasis of the analysis presented here is on the intra-annual and interannual variability of the greenhouse run with respect to the control run. This revealed considerable differences from the time-averaged results with occasions of marked positive and negative temperature deviations. Of particular interest were the periods of negative temperature departures compared to the control run which were identified, especially over the Northern Hemisphere continents. Temporal and spatial precipitation and soil moisture anomalies also occurred, some of which were related to the surface temperature changes. Substantial sea surface temperature anomalies were apparent in the greenhouse run, indicating that a source of climatic forcing existed in addition to that due to doubling of the CO2. Comparison of the intra-annual and interannual variability of the control run with that of the greenhouse run suggests that, in many situations, it will be difficult to identify a greenhouse signal against the intrinsic natural variability of the climatic system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 3 (1988), S. 19-33 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Naturally-occurring drought is defined here to be drought arising from the nonlinear interactions which are an inherent part of the dynamics of the climatic system. As such it has no specific excitation mechanism, in contrast to forced drought where sea surface temperature anomalies are frequently cited as an important precursor. The essential difference between these two types of drought is that the former is very local and isolated spatially, whereas the latter is widespread and coherent. Observations for Australia are used to illustrate these points. Results are given for a 10-year general circulation model integration which clearly simulated naturally occurring drought and highlighted its unique characteristics. Multi-annual time series for specific geographical regions in the model show that no differences in monthly mean values of relative humidity or zonal and meridional fluxes of moisture were apparent for years with or without drought. More detailed analysis indicated that rather small differences exist in atmospheric temperatures and absolute humidities between drought and nondrought years which are important factors in determining the onset of precipitation in the model. Overall the analysis emphasises the subtlety of the processes involved. These processes, however, were able to produce completely different precipitation histories from one year to the next at a given point. The smallness of the changes involved in the atmospheric processes indicates that the nonlinearities were able to modulate conditions at a given point within an existing synoptic system only slightly, rather than initiate a new climatic regime in drought years. The problem of naturally-occurring drought, of course, is that it is intrinsically unpredictable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In this study we present rainfall results from equilibrium 1 ×− and 2 × CO2 experiments with the CSIRO 4-level general circulation model. The 1 × CO2 results are discussed in relation to observed climate. Discussion of the 2 × CO2 results focuses upon changes in convective and non-convective rainfall as simulated in the model, and the consequences these changes have for simulated daily rainfall intensity and the frequency of heavy rainfall events. In doing this analysis, we recognize the significant shortcomings of GCM simulations of precipitation processes. However, because of the potential significance of any changes in heavy rainfall events as a result of the enhanced greenhouse effect, we believe a first examination of relevant GCM rainfall results is warranted. Generally, the model results show a marked increase in rainfall originating from penetrative convection and, in the mid-latitudes, a decline in largescale (non-convective) rainfall. It is argued that these changes in rainfall type are a consequence of the increased moisture holding capacity of the warmer atmosphere simulated for 2 × CO2 conditions. Related to changes in rainfall type, rainfall intensity (rain per rain day) increases in the model for most regions of the globe. Increases extend even to regions where total rainfall decreases. Indeed, the greater intensity of daily rainfall is a much clearer response of the model to increased greenhouse gases than the changes in total rainfall. We also find a decrease in the number of rainy days in the middle latitudes of both the Northern and Southern Hemispheres. To further elucidate these results daily rainfall frequency distributions are examined globally and for four selected regions of interest. In all regions the frequency of high rainfall events increases, and the return period of such events decreases markedly. If realistic, the findings have potentially serious practical implications in terms of an increased frequency and severity of floods in most regions. However, we discuss various important sources of uncertainty in the results presented, and indicate the need for rainfall intensity results to be examined in enhanced greenhouse experiments with other GCMs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A general circulation model is used to simulate the atmospheric response to a prescribed, idealized time varying warm sea surface temperature anomaly (SSTA) in the equatorial Pacific characteristic of ENSO events. The model incorporates the full seasonal cycle and an ensemble of five anomaly simulations, each of 14 months duration, is performed and the results compared with those from a ten year control simulation involving climatological SSTs. In a test of the model, simulated perturbations to precipitation patterns are compared with the analysis by Ropelewski and Halpert which identifies regions where precipitation perturbations are associated with the ENSO cycle. Strong and statistically significant perturbations are simulated throughout much of the equatorial Pacific and the Australian region which agree with the analysis. Perturbations over the Americas and the Indian sub-continent show part agreement with observations, while elsewhere, at more remote and high latitude locations, there is less agreement, providing some indication of model limitations in simulating the hydrological cycle. Over the equatorial Pacific most of the anomalous precipitation is accounted for by moisture flux convergence. Only in the vicinity of the maximum anomaly, located in the eastern Pacific, do warmer SSTs contribute to the perturbed circulation. Elsewhere, anomalous wind speeds mainly determine anomalous heat fluxes. As a result, the large scale perturbations to wind, moisture and precipitation appear to be forced indirectly, rather than directly as assumed in simple ocean-atmosphere models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 14 (1998), S. 503-516 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract  The responses of the CSIRO coupled atmosphere-ocean-sea ice model to two greenhouse gas induced warming scenarios are described and compared to a control run with the current CO2 level. In one scenario, denoted IS92a, the atmospheric CO2 increases such that it reaches doubling after 128 years. In the other, the CO2 increases at 1% per year compounding (doubling after 70 y). As the CO2 increases in both scenarios, the top-of-atmosphere outgoing longwave radiation increases giving enhanced cooling of the coupled system, while the outgoing short wave radiation decreases contributing to a warming of the system. The latter overcompensates the former leading to a global mean net radiative heat gain. The distribution of this heat gain produces the well-known interhemispheric asymmetry in warming, despite a decrease in the sea ice around Antarctica in this model. It is found that the volume mean temperature response over the southern ocean is greater than that over the northern hemispheric oceans, and a maximum warming takes place at the subsurface rather at the surface of the ocean in the southern mid-to-high latitude region. The enhanced high-latitude freshening associated with the strengthened hydrological cycle significantly affects the latitudinal distribution of warming and other responses. It enhances the warming immediately equatorward of the deep water formation regions while produces a reduced warming, even a cooling, in these regions. In both runs, there is a decrease in the large-scale oceanic currents which have a significant thermohaline-driven component. The reduction in these currents reduces the poleward transport of salt out of the tropical and subtropical regions of these oceans. This and the enhanced evaporation contribute to considerable increases in surface salinity in the tropical and subtropical regions. In IS92a, the warming rate before doubling is smaller than that in 1% scenario, but the cumulative effects of the two experiments at the time of doubling are similar. Nevertheless, significant contrasts exist. For example, at the time of doubling in IS92a, the warming of the upper ocean is greater because a more developed temperature-albedo feedback occurs. In addition, a longer time is allowed for heat anomalies to spread downward, and so the effective heat penetration depth is greater than that in the 1% scenario. Thus the oceanic response is influenced by the CO2 increase scenario used.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...