Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 4509-4517 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We address the issue of localization of bond energy in a molecule by stopping intramolecular vibrational relaxation (IVR). We show through model calculations that appropriate frequency sweeps permit selective locking over a well-defined range of resonance frequencies, with little excitation outside that range. We also propose a modified version of an adiabatic half passage experiment that will perform photon locking without complications from inhomogeneities or partial excitation of other transitions for a bright state coupled to a finite number of dark states.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 5081-5090 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In the weak-field limit, laser pulses optimized to induce vibrational wave packet recurrences in excited state potentials were calculated for Morse oscillators and for a real system [the X 1Σ+ and A 3Π(1) states of IBr]. The performance of the optimized pulses was studied via simulated wave packet propagation. Such optimal light fields may be computationally generated given only the form of the electronic potential surfaces, knowledge of the particular ground state supplying population, and simple molecular constants. Thus it should be possible to use the modulation of light fields experimentally optimized to achieve recurrences in order to obtain substantial information regarding previously uncharacterized potential surfaces in both diatomic and polyatomic molecules. Moreover, it should be possible to generalize this approach to the strong-field limit. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...