Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] We describe synthetic shuffling, an evolutionary protein engineering technology in which every amino acid from a set of parents is allowed to recombine independently of every other amino acid. With the use of degenerate oligonucleotides, synthetic shuffling provides a direct route from database ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 22 (1995), S. 413-418 
    ISSN: 0887-3585
    Keywords: protein folding ; lattice models ; protein energetics ; local interactions ; spin-glass theory ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Lattice models of proteins were used to examine the role of local propensities in stabilizing the native state of a protein, using techniques drawn from spin-glass theory to characterize the free-energy landscapes. In the strong evolutionary limit, optimal conditions for folding are achieved when the contributions from local interactions to the stability of the native state is small. Further increasing the local interactions rapidly decreases the foldability. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 461-466 
    ISSN: 0887-3585
    Keywords: protein folding ; molecular evolution ; lattice models ; fitness landscapes ; neutral networks ; spin-glass theory ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We model the evolution of simple lattice proteins as a random walk in a fitness landscape, where the fitness represents the ability of the protein to fold. At higher selective pressure, the evolutionary trajectories are confined to neutral networks where the native structure is conserved and the dynamics are non self-averaging and nonexponential. The optimizability of the corresponding native structure has a strong effect on the size of these neutral networks and thus on the nature of the evolutionary process. Proteins 29:461-466, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 36 (1995), S. 43-51 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: During evolution, the effective interactions between residues in a protein can be adjusted through mutations to allow the protein to fold to its native structure on an adequate time scale. We seek to address the question: Are there some structures that can be better optimized than others? Using exhaustive enumeration of the compact conformations of short proteins confined to simple lattices, we find that the best structures are those that contain contacts rare in random structures, indicating the importance of nonlocal contacts for assisting the folding process. Certain structural motifs such as long β-hairpins, Greek-key motifs, and jelly rolls, commonly found in proteins of known structure, have a high degree of optimizability. Contrary to what might be expected, positive correlations between the various interactions reduce optimizability. The optimization procedure produces a correlated energy landscape, which might assist folding. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 42 (1997), S. 427-438 
    ISSN: 0006-3525
    Keywords: protein folding ; molecular evolution ; lattice models ; fitness landscapes ; spin glasses ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Molecular evolution may be considered as a walk in a multidimensional fitness landscape, where the fitness at each point is associated with features such as the function, stability, and survivability of these molecules. We present a simple model for the evolution of protein sequences on a landscape with a precisely defined fitness function. We use simple lattice models to represent protein structures, with the ability of a protein sequence to fold into the structure with lowest energy, quantified as the foldability, representing the fitness of the sequence. The foldability of the sequence is characterized based on the spin glass model of protein folding. We consider evolution as a walk in this foldability landscape and study the nature of the landscape and the resulting dynamics. Selective pressure is explicitly included in this model in the form of a minimum foldability requirement. We find that different native structures are not evenly distributed in interaction space, with similar structures and structures with similar optimal foldabilities clustered together. Evolving proteins marginally fulfill the selective criteria of foldability. As the selective pressure is increased, evolutionary trajectories become increasingly confined to “neutral networks,” where the sequence and the interactions can be significantly changed while a constant structure is maintained. © 1997 John Wiley & Sons, Inc. Biopoly 42: 427-438, 1997
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...