Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: β1→3N-acetylglucosaminyltransferase ; cancer-associated carbohydrate antigens ; biosynthesis ; glycosphingolipid ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human colonic adenocarcinoma DLD-1 cells were grown under conditions which induce characteristics of differentiated cells using medium containing 0.8% N,N-dimethylformamide in order to study alterations in glycosphingolipid glycosyltransferase activities during this process. Analysis of biosynthetic reactions involved in lacto-series antigen synthesis revealed no changes in the specific activities of either β1→4galactosyltransferase or α1→3/4fucosyltransferase with N,N-dimethylformamide treatment. However, a dramatic decrease of from 14- to 20-fold in the β1→3N-acetylglucosaminyltransferase activity was observed in the treated cells. This enzyme catalyzes the rate-limiting step in lacto-series core chain synthesis. This is consistent with the pattern of regulation of lacto-series antigen expression found to occur during oncogenesis in human colonic mucosa (Holmes EH, Hakomori S, Ostrander GK: J Biol Chem 262:15649, 1987). Total glycolipids from untreated and N,N-dimethylformamide-treated cells were isolated and subjected to TLC immunostain analysis and solid phase radioimmunoassay with a series of monoclonal antibodies specific for lacto-series-based carbohydrate antigens. A decrease of about 2-fold or less in the quantity of lacto-series antigens was observed as a consequence of N,N-dimethylformamide treatment in both neutral glycolipid and ganglioside fractions. The results suggest that only very low levels of β1→3N-acetylglucosaminyltransferase activity are required for the steady state expression of significant levels of lacto-series based glycolipids and that modulation of its activity levels by N,N-dimethylformamide treatment in DLD-1 cells represents a convenient in vitro system for studying aspects of regulation of lacto-series antigen expression.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: β1 → 3galactosyltransferase ; stable expression ; glycolipids ; lacto-series type 1 chain ; Lewis antigens ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transient expression of a human colonic adenocarcinoma Colo 205 cell derived cDNA in cell lines which ordinarily express only neolacto-series glycolipids has resulted in the expression of a β1 → 3galactosyltransferase gene responsible for synthesis of glycolipids based upon the lacto-series type 1 core chain. Calcium phosphate transfected cells were panned on anti-lgM coated plates after initial treatment with a combination of monoclonal antibodies specific for type 1 chain terminal structures (TE-3) and a very broadly specific antibody reactive with multiple type 1 chain derivatives (TE-2). Adherent cells after panning were capable of efficiently transferring Gal in β1 → 3-linkage to the acceptor glycolipid Lc3. Using these reagents, clones of stably transfected human colonic adenocarcinoma HCT-15 cells were produced and isolated. Parental HCT-15 cells do not express type 1 chain based antigens. The nature of the type 1 chain based antigens produced in each of these clones was analyzed by solid phase antibody binding assays. Three types of behavior were observed. Formation of type 1 terminal structures that were either exclusively sialylated or fucosylated, or a mixture of sialylated and fucosylated determinants occurred. In contrast, no difference in type 2 antigen expression between any clone and the parental cells was observed. These data suggest that coordination of subsequent reactions capable of modifying type 1 chain structures is not the same in all clones. The relationship of these results to aspects of cellular regulation of carbohydrate biosynthesis is discussed. © 1992 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...