Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 276 (1998), S. 66-71 
    ISSN: 1435-1536
    Keywords: Keywords DMPC-liposomes ; size distribution ; uncharged polymers ; kinetic stability ; photon correlation spectroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Polymer-free and polymer-bearing small unilamellar (SUV) liposomes from dimyristoyl-phosphatidylcholine (DMPC) were prepared under standardized conditions. Polymer-bearing liposomes were formed by incorporating an uncharged polymer [hydrolyzed poly(vinyl alcohol) (PVA), poly(vinyl alcohol-co-vinylacetal) (PVA-Al), poly(vinyl alcohol-co-vinyl propional) (PVA-Prol) poly(vinyl alcohol-co-vinyl butiral) (PVA-Bul) copolymer or poly(vinyl pyrrolidone) (PVP)] into the membrane bilayer of vesicles. The kinetic (long-term) stability of the liposome dispersions stored in distilled water, in physiological NaCl solution and at various pH values, respectively, were studied. The physical stability of vesicles was tested by measuring the size and the zeta potential of liposomes by means of a Malvern Zetasizer 4 apparatus. It was shown that most of these polymers are effective steric stabilizers for the DMPC-liposomes. Among the polymers, the PVA-Bul and PVA-Prol copolymers and the PVP of high molecular mass exhibited the most efficient stabilizing effect at each pH studied, indicating that the formation of a relatively thick polymer layer around the lipid bilayers ensures an enhanced and prolonged physical stability of liposomes. Also, the butiral or propional side chain in the PVA-based copolymers presumably promotes the anchoring of macromolecules to the vesicles. Using these macromolecules, the colloidal interactions between vesicles can be modified and so the physical stability of liposomes and the kinetic stability of liposome dispersions can also be controlled.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...