Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Escherichia coli cydAB operon, encoding the subunits of the high-affinity cytochrome d oxidase, is maximally transcribed in microaerobiosis as a result of the combined action of the oxygen-responsive regulators Fnr and ArcA. Here, we report that the histone-like protein H-NS is an aerobic repressor of cydAB expression. ArcA is shown to antagonize H-NS action to render cydAB expression insensitive to H-NS repression in anaerobiosis. The targets for H-NS-mediated aerobic repression are the four oxygen-regulated promoters, designated P1, P2, P3 and P4. H-NS control is the result of H-NS binding to an extended region within the cydAB promoter element, including sequences upstream from and overlapping the four regulated promoters. We propose a regulatory model in which oxygen control of cydAB transcription is mediated by three alternative protein–DNA complexes that are assembled sequentially on the promoter region as the cells are shifted from aerobic to microaerobic and to anaerobic conditions. According to this model, ArcA-P plays a central role in cydAB regulation by antagonizing H-NS repression of cydAB transcription when oxygen becomes limiting. This allows peak gene expression and subsequent repression by Fnr under fully anaerobic conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Molecular microbiology 44 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Membrane receptors communicate between the external world and the cell interior. In bacteria, these receptors include the transmembrane sensor kinases, which control gene expression via their cognate response regulators, and chemoreceptors, which control the direction of flagellar rotation via the CheA kinase and CheY response regulator. Here, we show that a chimeric protein that joins the ligand-binding, transmembrane and linker domains of the NarX sensor kinase to the signalling and adaptation domains of the Tar chemoreceptor of Escherichia coli mediates repellent responses to nitrate and nitrite. Nitrate induces a stronger response than nitrite and is effective at lower concentrations, mirroring the relative sensitivity to these ligands exhibited by NarX itself. We conclude that the NarX–Tar hybrid functions as a bona fide chemoreceptor whose activity can be predicted from its component parts. This observation implies that ligand-dependent activation of a sensor kinase and repellent-initiated activation of receptor-coupled CheA kinase involve a similar transmembrane signal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Escherichia coli cydAB operon encodes the high-affinity terminal oxidase of the oxygen respiratory chain, cytochrome d oxidase. The sensor–regulator pair, ArcB–ArcA, is responsible for the microaerobic activation of the cydAB operon, whereas the anaerobic regulator Fnr represses its expression in the absence of oxygen. Fnr binds in vitro at two sites within the cydAB promoter element. To discern whether these two regions have an in vivo function in the anaerobic regulation of cydAB, the Fnr-binding motifs were mutagenized individually and in combination. The effects of these mutations on in vivo gene expression were determined by lac fusion and primer extension analysis. Our results show that the Fnr-2 site is critical for Fnr-mediated anaerobic repression of the two main cydAB promoters, P1 and P2. In contrast, the Fnr-1 site has an auxiliary role in the anaerobic repression of P1, but not of P2. Transcription from P1 did not affect ArcA-mediated activation or Fnr-mediated repression of P2, indicating that oxygen regulation is exerted on both promoters in an independent fashion. In addition, three new promoters were identified in the cydAB control region, and the 5′ ends of the corresponding transcripts were mapped. Two of these promoters, designated P3 and P4, are co-ordinately regulated with P1 and P2 in response to oxygen, ArcA and Fnr. The P5 promoter is not Fnr regulated and is only weakly activated by ArcA. The contribution of these three additional promoters to the overall cydAB expression is most relevant under aerobic conditions. Our results suggest a unique repression model, in which one Fnr dimer bound to one single site (Fnr-2) is sufficient to downregulate transcription from four cydAB promoters. In conclusion, transcription of the cydAB operon is driven by a complex regulatory element containing at least five promoters that act in unison to provide adequate oxygen control of gene expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 23 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Escherichia coli molybdate transporter, encoded by the modABCD operon, is negatively regulated by the modE gene product in response to the intracellular molybdate concentration. Utilizing an in vivo titration assay, we localized the ModE-binding site to the start of modA transcription. This localization was further characterized using in vitro gel-shift assays and DNase I footprinting. ModE bound the wild-type modA promoter with an apparent dissociation constant (Kd) of 45 nM, and addition of molybdate, in physiologically relevant amounts, significantly increased DNA binding. Consistent with these data, modA promoter fragments containing mutations that reduced ModE repression in vivo displayed proportionately higher apparent Kd values in vitro. DNase I footprinting of the modA promoter revealed a single protected region that overlapped the start site of transcription and extended from position −18 to +10, relative to the transcript start site. Gel-shifting assays, employing the promoter regions from the tor, nrf, moa and moe operons, revealed that ModE bound only the moa promoter region, with an apparent Kd of 24 nM. Footprint analysis of the moaA promoter revealed a single protected region located immediately upstream of the putative −35 consensus sequence and extending from position −202 to −174, relative to the start of translation. In vivo expression of a moaA–lacZ operon fusion was stimulated twofold by ModE. However, relative to modA, binding of ModE to the moaA promoter appeared to be largely molybdate independent both in vitro and in vivo. These findings demonstrate that ModE acts both as a repressor and activator of the mod and moa operons, respectively, depending on the properties of the binding site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 6 (1992), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In response to nitrate availability, Escherichia coli regulates the synthesis of a number of enzymes involved in anaerobic respiration and fermentation. When nitrate is present, nitrate reductase (narGHJI) gene expression is induced, while expression of the DMSO/TMAO reductase (dmsABC, fumarate reductase (frdABCD)and fermentation related genes are repressed. The narL and narX gene products are required for this nitrate-dependent control, and apparently function as members of a two-component regulatory system. NarX is a presumed sensor-transmitter for nitrate and possibly molybdenum detection. The presumed response-regulator, NarL, when activated by NarX then binds at the regulatory DNA sites of genes to modulate their expression. In this study a third nitrate regulatory gene, narQ, was identified that also participates in nitrate-dependent gene regulation. Strains defective in either narQ or narX alone exhibited no nitrate-dependent phenotype whereas mutants defective in both narQ and narX were fully inactive for nitrate-dependent repression or activation. In all conditions tested, this regulation required a functional narL gene product. These findings suggest that the narX and narQ products have complementary sensor-transmitter functions for nitrate detection, and can work independently to activate NarL, for eliciting nitrate-dependent regulation of anaerobic electron transport and fermentation functions. The narQ gene was cloned, sequenced, and compared with the narX gene. Both gene products are similar in size, hydrophobicity, and sequence, and contain a highly conserved histidine residue common to sensor–transmitter proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Escherichia coli NarX, NarQ, NarL and NarP proteins comprise a two-component regulatory system that controls the expression of many anaerobic electron-transport and fermentation-related genes in response to nitrate and nitrite. Either of the two sensor-transmitter proteins, NarX and NarQ, can activate the response-regulator proteins, NarL and NarP, which in turn are able to bind at their respective DNA regulatory sites to modulate gene expression. NarX contains a conserved 17 amino acid sequence, designated the ‘P-box’ element, that is essential for nitrate sensing. In this study we characterize narQ mutants that also confer altered nitrate control of NarL-dependent nitrate reductase (narGHJI ) and fumarate reductase (frdABCD) gene expression. While some narQ mutations cause the constitutive activation or repression of reporter-gene expression even when the cells are grown in the absence of the nitrate signal (i.e. a ‘locked-on’ phenotype), other mutations abolish nitrate-dependent control (i.e. a ‘locked-off’ phenotype). Interestingly the narQ (A42→T) and narQ (R50→Q) mutations along with the analogous narX18 (A46→T) and narX902 (R54→E) mutations also confer a ‘locked-on’ or a ‘locked-off’ phenotype in response to nitrite, the second environmental signal detected by NarQ and NarX. Furthermore, these narQ and narX mutations also affect NarP-dependent gene regulation of nitrite reductase (nrfABCDEFG) and aeg-46.5 gene expression in response to nitrite. We therefore propose that the NarQ sensor-transmitter protein also detects nitrate and nitrite in the periplasmic space via its periplasmic domain. A signal transduction model, which we previously proposed for NarX, is now extended to NarQ, in which a nitrate- or nitrite-detection event in the periplasmic region of the cell is followed by a signal transduction event through the inner membrane to the cytoplasmic domain of NarQ and NarX proteins to modulate their protein kinase/phosphatase activities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 26 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Succinate dehydrogenase (sdhCDAB ) gene expression in Escherichia coli is negatively regulated by the arcA and fnr gene products during anaerobic cell growth conditions. The controlled synthesis of this sole membrane-bound enzyme of the tricarboxylic acid cycle allows optimal participation in the aerobic electron transport pathway for the generation of energy via oxidative phosphorylation reactions. To understand how ArcA participates in the anaerobic repression of sdhCDAB expression, a family of sdhC–lacZ fusions was constructed and analysed in vivo. DNase I footprint and gel shift assays using purified ArcA protein revealed the location of four distinct and independent ArcA binding sites in the sdhC promoter region. ArcA sites, designated sites 1 and 2, are centred at −205 bp and −119 bp upstream of the sdhC promoter, respectively, whereas ArcA site 3 overlaps the −35 and −10 regions of the sdhC promoter. A fourth ArcA site is centred at + 257 bp downstream of the sdhC promoter. They are bound with differing affinity by ArcA and ArcA phosphate. The in vivo studies, in combination with the in vitro studies, indicate that ArcA site 3 is necessary and sufficient for the ArcA-dependent repression of sdhC gene expression, while the DNA region containing ArcA site 2 contributes to maximal gene expression. The DNA-containing ArcA sites 1 and 4 provide minor roles in the ArcA regulation of sdhC expression. Lastly, the Fnr-dependent control of sdhCDAB gene expression was shown to occur independently of the ArcA and to require DNA sequences near the start of sdhC transcription.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...