Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 38 (1991), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The developmental stages of a recently described microsporidian from the nucleus of hematopoietic cells of salmonid fish were found to be unique among the Microsporida. All observed stages, including meronts, sporonts, and spores were in direct contact with the host cell nucleus (principally hematopoietic cells) of chinook salmon (Oncorhynchus tshawytscha). There is no par-asitophorous vacuole and sporogony does not involve formation of a pansporoblastic membrane as with other members of the suborder Apansporoblastina. The extrusion apparatus differentiates prior to division of sporogonial plasmodia. The spores are ovoid (1 times 2 μm) and uninucleate, and possess a coiled polar tube with 8-12 turns. Developmental stages of the salmonid microsporidian are similar to those described for Enterocytozoon bieneusi as found in the intestinal mucosa of human AIDS patients. However, the intranuclear development, different cell types, and host infected clearly separate the salmonid and human parasites. Accordingly, the intranuclear parasite of salmonids is given the name Enterocytozoon salmonis n. sp. within the suborder Apansporoblastina.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 32 (1985), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Proliferative kidney disease (PKD), caused by an unclassified protozoan (PKX), is reported from Pacific salmon, Oncorhynchus tshawytscha (Walbaum) and O. kisutch (Walbaum), and steelhead trout, Salmo gairdneri Richardson, held at the Mad River Hatchery in California, USA. The cumulative mortality attributed to the disease was 95, 13, and 18% respectively. The mortalities were greatest at mean water temperatures of 12-14°C during July 1983. The ultrastructure of the PKX organism and its associated pathology during clinical disease in all three species were consistent with those of the parasite in rainbow trout (Salmo gairdneri) as described in European outbreaks. Significant mortalities did not occur after August, at which time the parasite could no longer be detected in the salmon species. The steelhead continued to exhibit parasites in the kidney interstitium and epithelium and lumens of the tubules. Myxosporidan trophozoites and developing spores were also observed in the lumens of the kidney tubules of these fish. Although a mixed infection with another parasite may have occurred, evidence suggests that the myxosporidans are later stages of PKX. They were only observed in fish exposed to water with the infective stage and were particularly prominent in recovering fish. The PKX organism is similar to UBO, an unclassified protozoan of carp suspected to be an early stage of Sphaerospora renicola Dyková & Lom. Both parasites infect the blood and kidney, divide by endogeny, and are released by disintegration of the primary mother cell. The intraluminal myxosporean forms show similarities to Sphaerospora spp. in that they are monosporous and sporoblasts are formed within pseudoplasmodia. It is possible that PKX migrates to the lumen of the kidney tubule and subsequently sporulates. If the myxosporean forms are later stages of PKX, then it would belong to the phlyum Myxozoa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 42 (1995), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . Enterocytozoon salmonis, an intranuclear microsporidian of salmonid fish, was propagated in vitro using chinook salmon mononuclear leukocytes. Characteristic morphology and infectivity of the cultured parasites were evaluated to determine the effect of in vitro maintenance and passage on the parasites. Cultured parasites developed through several stages from meronts to infectious spores. Parasites obtained from in vitro passages tested up to the 17th subculture, retained their morphological characteristics and pathogenicity for chinook salmon (Oncorhynchus tshawytscha). The disease induced by experimental infections with parasites from in vitro cultures was ideniical to that observed in naturally infected chinook salmon. An examination of supernatants obtained from the infected cultures revealed evidence of soluble factor(s) produced by E. salmonis-infected cells that stimulated uninfected target cells in vitro. This observation may explain in part the proliferative disease of hematopoietic tissues which characterizes the disease in infected chinook salmon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 39 (1992), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Enterocytozoon salmonis was transmitted to chinook salmon Oncorhynchus tshawytscha by feeding tissues infected with the parasite and by cohabitation of noninfected fish with experimentally infected fish. Affected fish (dead and survivors) in both transmission trials had gross and microscopic signs of the disease and merogonic and sporogonic stages of the parasite. There were no morbidities or mortalities, or evidence of the parasite among control fish in either study. Results suggest that the parasite may be contracted by indirect contact among healthy and infected fish held in crowded ponds or net pens or by direct ingestion of spores found in the water.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . The alternating myxosporean and actinosporean stages of the myxozoan parasitc Myxobolus cerebralis (Hofer 1903) from its salmonid fish and aquatic oligochaete hosts, respectively, were compared for sequence homology of the small subunit (18S) ribosomal RNA genes. A 99.8% similarity between the sequences of these two stages was substantially greater than that of M. cerebralis compared to two other Myxobolus sp. from salmonid fish. Our results are the first molecular evidence confirming the alternating stages initially described by Wolf and Markiw [25] for the life cycle of M. cerebralis but found in two different taxonomic classes (Myxosporea and Actinosporea) are indeed forms of the same organism. Sequencing of rRNA genes of the actinosporean stage followed by development of specific primers for DNA amplification of the myxosporean stage, as in our study, should be applied to solve other myxozoan life cycles. Additionally, these approaches will in the future provide useful diagnostic reagents for the detection and study of this important group of fish pathogens.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Immunological reviews 166 (1998), S. 0 
    ISSN: 1600-065X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary: Chemokines arc small inducible proteins that direct the migration of leukocytes. While chemokines are well characterised in mammals, they have yet to be identified in fish. We have isolated a cDNA clone from rainbow trout (Oncorhynchus mykiss) which encodes a protein (CK-1) having structural features typical of chemokines. Amino-acid residues that define the β-chemokines of mammals are conserved in CK-1, including the paired cysteine motif, CC. Further similarities are shared with the C6 subfamily of β-chemokines. In contrast, the organisation of the CK-f gene is closer to that of mammalian α-chemokine genes than β-chemokine genes. The CK-1 gene is present in all four salmonid species examined and the nucleotide sequences of the exons are highly conserved. CK-1 has characteristics in common with mammalian α and β-chemokine suggesting that this salmonid chemokine gene preserves traits once present in the ancestral chemokine gene from which modern mammalian chemokine genes evolved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Immunological reviews 166 (1998), S. 0 
    ISSN: 1600-065X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary: Whirling disease of rainbow trout is caused by Myxobolus cerebralis, a myxozoan parasite possessing a life cycle well adapted to the natural environments where salmonid fish are found. Whirling disease was first described in Europe in 1898 among farmed rainbow trout but recent occurrences have been devastating to wild trout in North America. The disease is considered a major threat to survival of wild rainbow trout in the intermountain west of the United States. Difficulties in containing the spread and potentially eliminating the pathogen are tied to features of a complex life cycle involving two hosts, the salmonid fish and an aquatic oligochaete. Details of the morphologic development of the parasite have been described in each host but only now are we beginning to appreciate the breadth of interactions between these developmental forms and the sequential responses of the host. Fundamental mechanisms of the recognition and attachment of the parasite to the hosts, how host immunity is evaded and the unknown influences of environmental factors all contribute to a rather poor understanding of the biology of the parasite. Although the biology and ecology of the salmonid host are better known than for the oligochaete host, our knowledge is inadequate to interpret their complex interactions with the parasite. This uncertainty precludes the development of effective management activities designed to enhance the viability and productivity of wild trout populations in M. cerebralis- positive river systems. Improving our understanding of the hosts, the parasite and the environmental factors determining their interaction should provide for more focused and effective control methods for containing the spread and devastating effects whirling disease is causing to our wild trout populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . In the last few years two factors have helped to significantly advance our understanding of the Myxozoa. First, the phenomenal increase in fin fish aquaculture in the 1990s has lead to the increased importance of these parasites; in turn this has lead to intensified research efforts, which have increased knowledge of the development, diagnosis, and pathogenesis of myxozoans. The hallmark discovery in the 1980s that the life cycle of Myxobolus cerebralis requires development of an actinosporean stage in the oligochaete, Tubifex tubifex, led to the elucidation of the life cycles of several other myxozoans. Also, the life cycle and taxonomy of the enigmatic PKX myxozoan has been resolved: it is the alternate stage of the unusual myxozoan, Tetracapsula bryosahnonae, from bryozoans. The 18S rDNA gene of many species has been sequenced, and here we add 22 new sequences to the data set. Phylogenetic analyses using all these sequences indicate that:l) the Myxozoa are closely related to Cnidaria (also supported by morphological data); 2) marine taxa at the genus level branch separately from genera that usually infect freshwater fishes; 3) taxa cluster more by development and tissue location than by spore morphology; 4) the tetracapsulids branched off early in myxozoan evolution, perhaps reflected by their having bryozoan, rather than annelid hosts; 5) the morphology of actinosporeans offers little information for determining their myxosporean counterparts (assuming that they exist); and 6) the marine actinosporeans from Australia appear to form a clade within the platysporinid myxosporeans. Ribosomal DNA sequences have also enabled development of diagnostic tests for myxozoans. PCR and in situ hybridisation tests based on rDNA sequences have been developed for Myxobolus cerebralis, Ceratomyxa shasta, Kudoa spp., and Tetracapsula bryosalmonae (PKX). Lectin-based and antibody tests have also been developed for certain myxozoans, such as PKX and C. shasta. We also review important diseases caused by myxozoans, which are emerging or re-emerging. Epizootics of whirling disease in wild rainbow trout (Oncorhynchus mykiss) have recently been reported throughout the Rocky Mountain states of the USA. With a dramatic increase in aquaculture of fishes using marine netpens, several marine myxozoans have been recognized or elevated in status as pathological agents. Kudoa thyrsites infections have caused severe post-harvest myoliquefaction in pen-reared Atlantic salmon (Salmo salar), and Ceratomyxa spp., Sphaerospora spp., and Myxidium leei cause disease in pen-reared sea bass (Dicentrarchus labrax) and sea bream species (family Sparidae) in Mediterranean countries.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . The rosette agent is an obligate intracellular parasite that causes morbidity and mortality in salmonid fish. In laboratory cultures, the spore stage (2–6 uμm diam.) replicates in a salmonid cell line by sequential asexual division, giving rise to daughter cells. If infected cell cultures are transferred to distilled water, the spore stage undergoes internal division to give rise to at least 5 cells each of which develops into a uniflagellated zoospore with a body of approximately 2 μm and a flagellum approximately 10 μm long. Zoosporulation does not occur in cell culture medium alone, artificial seawater, or phosphate-buffered saline. This parasite is currently classified as a member of the Class Mesomycetozoea (formerly Ichthyosporea) based on phylogenetic analyses of the small subunit ribosomal DNA of three different isolates from fish. Given these new morphological observations combined with the available molecular phylogenetic data on other mesomycetozoeans, we propose to classify the rosette agent as Sphaerothecum destruens, n. g., n. sp. This new genus has unique features including (1) intracellular development of spore stages in various organs eliciting a host granulomatous response; and (2) the differentiation of mature spores into multiple, flagellated zoospores. Taken together, these characteristics clearly distinguish it from the closely related genera Dermocystidium and Rhinosporidium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 51 (2004), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The full-length actin gene from Myxobolus cerebralis (Mcer Act-1), the first characterized from representatives in the phylum Myxozoa, encodes a 378-amino acid polypeptide with an estimated molecular weight of 41,580-Da. A phylogenetic comparison found M. cerebralis to branch outside the metazoans. This finding contrasts with previous reports that suggest an evolutionary affinity of the Myxozoa with either the Bilateria or Cnidaria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...