Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 18 (1987), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY 1. The occurrence, composition and invertebrate fauna of naturally-occurring leaf packs were studied over 24 months in Langrivier, a second-order mountain stream in the south-western Cape, South Africa. Langrivier is shallow and fast-flowing and stores very low levels of allochthonous detritus, although natural leaf packs form an obvious part of the energy base in the stream throughout the year.2. The occurrence and size of the packs were influenced mainly by stream discharge and by the timing and character of leaf fall from riparian trees. Packs were smallest (minimum dry mass 17 g, minimum volume 1.7–10−5 m3) in winter when discharge was high, and largest (maximum dry mass 191 g, maximum volume 4.2–10−3 m3) in spring when discharge decreased and leaf fall from the evergreen riparian trees began. Through the year the packs covered a mean 0.41 % of the stream bed and had a mean abundance of 0.46 packs m−2 of stream bed. They were ephemeral, lasting on average 〈1.7 months and yet accounted for 29% of the stored detritus in the system. Wood was the dominant component of packs, and leaves at ali stages of decomposition were present throughout the year.3. The ratio of numbers of invertebrates in packs: numbers of individuals in the benthos was very low (0.002–0.030), presumably because of the rarity and small size of the packs. Nevertheless, the density of invertebrates per unit area covered by leaf packs was consistently much higher than the density in an equivalent area of the benthos, except during peak leaf fall (October to December).4. Experiments were undertaken with artificial leaf packs in order to determine the extent to which these simulated natural packs. Although both natural and artificial leaf packs contained a high proportion of Plecoptera (46% and 29% respectively), the natural packs contained high numbers of simuliid larvae (33% of total), whereas artificial packs had a high percentage of chironomid larvae (62%), Several other taxa regularly occurred in both types of pack but in very low numbers. In addition,
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: fynbos biome ; mountain stream ; spring leaf fall ; allochthonous detritus retention ; discharge ; calorific values ; C:N ratios ; annual cycles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The quality and quantity of allochthonous inputs and of benthic organic matter were investigated in a second-order, perennial mountain stream in the south-west Cape, South Africa, between April 1983 and January 1986. Although the endemic, riparian vegetation is sclerophyllous, low and evergreen, inputs of allochthonous detritus to the stream (434 to 500 g m−2y−1) were similar to those recorded for riparian communities worldwide, as were calorific values of these inputs (9548 to 10 032 KJ m−2y−1). Leaf fall of the riparian vegetation is seasonal, occurring in spring (November) as discharge decreases, resulting in retention of benthic organic matter (BOM) on the stream bed during summer and early autumn (maximum 224 g m−2). Early winter rains (May) scoured the stream almost clean of benthic detritus (winter minimum 8 g m−2). Therefore, BOM was predictably plentiful for about half of each year and predictably scarce for the other half. Coarse BOM (CBOM) and fine BOM (FBOM) constituted 46–64% of BOM standing stock, ultra-fine BOM (UBOM) 16–33% and leaf packs 13–24%. The mean annual calorific value of total BOM standing stock was 1709 KJ m−2. Both standing stocks and total calorific values of BOM were lower than those reported for streams in other biogeographical regions. Values of C:N ratios decreased with decrease in BOM particle size (CBOM 27–100; FBOM 25–27; UBOM 13–19) with no seasonal trends. The stream is erosive with a poor ability to retain organic detritus. Its character appears to be dictated by abiotic factors, the most important of which is winter spates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5117
    Keywords: storms ; stream chemistry ; antecedent conditions ; fire ; South Africa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The influence of different antecedent conditions on hydrochemical response during storm events was investigated in a small, south-western Cape mountain catchment. Winter and summer storms (four in total) were sampled both before and after the catchment was deliberately burnt. During winter storms, discharge responded rapidly to rainfall, and direct runoff represented the major component of streamflow. Marked lags were observed between rainfall and discharge peaks during the summer storms, and streamflow was dominated by delayed interflow. Chloride, PO inf4 sup3− -P and NO inf3 sup− -N exhibited variable response to discharge according to seasonal variations in soil-moisture levels, whereas the response of HCO inf3 sup− , H+ and NH inf4 sup+ -N was not influenced by season. The movement of ions appears to be affected more by geochemical processes operating within the soil than by plant-uptake dynamics, as the prescribed burn appeared to have little effect on relationships between ionic concentration and discharge. The findings of the study highlight the complexity of relationships between solute concentration and discharge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...