Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 54 (1989), S. 1321-1352 
    ISSN: 1572-9613
    Keywords: Exit times ; first passage times ; colored noise ; Ornstein-Uhlenbeck process ; half-range expansion ; singular perturbation methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We analyze the exit time (first passage time) problem for the Ornstein-Uhlenbeck model of Brownian motion. Specifically, consider the positionX(t) of a particle whose velocity is an Ornstein-Uhlenbeck process with amplitudeσ/ρ and correlation time ε2, $$dX/dt = \sigma Z/\varepsilon , dZ/dt = - Z/\varepsilon ^2 + 2^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \xi (t)/\varepsilon $$ whereξ(t) is Gaussian white noise. Let the exit timet ex be the first time the particle escapes an interval −A〈X(t)〈B, given that it starts atX(0)=0 withZ(0)=z 0. Here we determine the exit time probability distributionF(t)≡Prob {t ex〉t} by directly solving the Fokker-Planck equation. In brief, after taking a Laplace transform, we use singular perturbation methods to reduce the Fokker-Planck equation to a boundary layer problem. This boundary layer problem turns out to be a half-range expansion problem, which we solve via complex variable techniques. This yields the Laplace transform ofF(t) to within a transcendentally smallO(e −A/εσ +e −B/εσ error. We then obtainF(t) by inverting the transform order by order in ε. In particular, by lettingB→∞ we obtain the solution to Wang and Uhlenbeck's unsolved problem b; throughO(ε2σ2/A 1) this solution is $$F(t) = Erf\left\{ {\frac{{A + \varepsilon \sigma \alpha + \varepsilon \sigma z_0 }}{{2\sigma (t - \varepsilon ^2 \kappa )^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} \right\} + ... for \frac{t}{{\varepsilon ^2 }} 〉 〉 1$$ andF=1 otherwise. Here, α=∥ξ(1/2)∥=1.4603⋯, where ξ is the Riemann zeta function, and the constant κ is 0.22749⋯.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 37 (1991), S. 1265-1269 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...