Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Key words Transcranial magnetic stimulation ; Functional magnetic resonance imaging ; Motor cortex Central sulcus ; D wave
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In order to locate the site of action of transcranial magnetic stimulation (TMS) within the human motor cortices, we investigated how the optimal positions for evoking motor responses over the scalp corresponded to the hand and leg primary-motor areas. TMS was delivered with a figure-8 shaped coil over each point of a grid system constructed on the skull surface, each separated by 1 cm, to find the optimal site for obtaining motor-evoked potentials (MEPs) in the contralateral first dorsal interosseous (FDI) and tibialis anterior (TA) muscles. Magnetic resonance imaging scans of the brain were taken for each subject with markers placed over these sites, the positions of which were projected onto the cortical region just beneath. On the other hand, cortical areas where blood flow increased during finger tapping or leg movements were identified on functional magnetic resonance images (fMRI), which should include the hand and leg primary-motor areas. The optimal location for eliciting MEPs in FDI, regardless of their latency, lay just above the bank of the precentral gyrus, which coincided with the activated region during finger tapping in fMRI studies. The direction of induced current preferentially eliciting MEPs with the shortest latency in each subject was nearly perpendicular to the course of the precentral gyrus at this position. The optimal site for evoking motor responses in TA was also located just above the activated area during leg movements identified within the anterior portion of the paracentral lobule. The results suggest that, for magnetic stimulation, activation occurs in the primary hand and leg motor area (Brodmann area 4), which is closest in distance to the optimal scalp position for evoking motor responses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Key words Simple reaction time ; Electrical stimulation ; Transcranial magnetic stimulation ; Intersensory facilitation ; Motor cortex ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Subthreshold transcranial magnetic stimulation (TMS) over the motor cortex can shorten the simple reaction time in contralateral arm muscles if the cortical shock is given at about the same time as the reaction stimulus. The present experiments were designed to investigate whether this phenomenon is due to a specific facilitatory effect on cortical circuitry. The simple visual reaction time was shortened by 20–50 ms when subthreshold TMS was given over the contralateral motor cortex. Reaction time was reduced to the same level whether the magnetic stimulus was given over the bilateral motor cortices or over other points on the scalp (Cz, Pz). Indeed, similar effects could be seen with conventional electrical stimulation over the neck, or even when the coil was discharged (giving a click sound) near the head. We conclude that much of the effect of TMS on simple reaction time is due to intersensory facilitation, although part of it may be ascribed to a specific effect on the excitability of motor cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...