Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Whole cell absorption curves of the marine dinoflagellate Glenodinium sp., cultured at irradiances of 250μW/cm2 (low light) and 2500μW/cm2 (high light), were measured and their difference spectrum determined. Absorption by low light grown cells exceeded that of high light grown cells throughout the visible spectrum by a factor which ranged from 2 to 4. The difference spectrum supported the view that increased pigmentation, resulting from low light conditions, was largely due to an increase in cell content of a peridinin-chlorophyll a-protein (PCP) and an unidentified chlorophyll a component of the chloroplast membrane. Photosynthetic action spectrum measurements indicated that chlorophyll a, peridinin, and very likely chlorophyll c, were effective light-harvesting pigments for photosynthesis in both high and low light grown cultures of Glenodinium sp. Comparison of action spectra and absorption spectra suggested that low light grown cells selectively increased cellular absorption in the 480 nm to 560 nm region, and effectively utilized this spectral region for the promotion of oxygen evolution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A peridinin-chlorophyll a-protein complex (PCP) was obtained in large quantity from the marine dinoflagellates, Glenodinium sp. and Gonyaulax polyedra. The chromoproteins have similar molecular weights, 35,500 for Glenodinium sp. and 34,500 for G. polyedra. The proteins from the PCP complex of Glenodinium sp. dissociated from the chromophore on treatment with 1% sodium dodecyl sulfate (SDS) at room temperature. The protein component was a single subunit with a molecular weight of 15,500. Proteins from the PCP complex of G. polyedra were composed of a single polypeptide with a molecular weight of about 32,000. Two peridinin-chlorophyll a-proteins from Glenodinium sp. accounted for 70% of the PCP complex and had isoelectric points of 7.4 and 7.3. The PCP complex from G. polyedra was dominated by a single chromoprotein with an isoelectric point of 7.2 Chromophore analysis indicated the presence of only peridinin and chlorophyll a in a molar ratio approaching 4:1. Other pigments characteristically found in dinoflagellates were absent. Fluorescence excitation spectra of purified PCP indicated an efficient energy transfer from peridinin to chlorophyll a, an observation that lends support to the reported role of peridinin as an accessory pigment in photosynthetic oxygen evolution. In several other brown colored dinoflagellates examined, PCP representtd less than 20% of the total peridinin. However, no PCP could be isolated from cultures of Amphidinium carterae (PY-1). This study provides further evidence that PCP is a normal component of most peridinin-containing dinoflagellates, and functions as a light-harvesting component of the dinoflagellate chloroplast. No fucoxanthin-containing analog of PCP was detected in the chrysophyte, Cricosphera carterae and the dinoflagellate Glenodinium foliaceum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...