Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 13 (1974), S. 4290-4298 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 25 (1984), S. 197-212 
    ISSN: 0730-2312
    Keywords: calmodulin ; dynein ; ATPase ; anion ; solubilization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The basal ATPase activity of 30S dynein, whether obtained by extraction of ciliary axonemes with a high (0.5 M NaCl) or low (1 mM Tris-0.1 mM EDTA) ionic strength buffer is increased by NaCl, NaNO3, and Na acetate, with NaNO3 causing the largest increase. The calmodulin-activated ATPase activity of 30S dynein is also increased by addition of NaCl, NaNO3, or Na acetate, but the effects are less pronounced than on basal activity, so that the calmodulin activation ratio (CAR) decreases to 1.0 as salt concentration increases to 0.2 M. These salts also reduce the CAR of 14S dynein ATPase to 1.0 but by strongly inhibiting the calmodulin-activated ATPase activity and only slightly inhibiting the basal activity. Sodium fluoride differs both quantitatively and qualitatively from the other three salts studied. It inhibits the ATPase activity of both 14S and 30S dyneins at concentrations below 5 mM and, by a stronger inhibition of the calmodulin-activated ATPase activities, reduces the CAR to 1.0. Na acetate does not inhibit axonemal ATPase, nor does it interfere with the drop in turbidity caused by ATP and extracts very little protein from the axonemes. NaCl and, especially, NaNO3, cause a slow decrease in A350 of an axonemal suspension and an inhibition of the turbidity response to ATP. NaF, at concentrations comparable to those that inhibit the ATPase activities of the solubilized dyneins, also inhibits axonemal ATPase activity and the turbidity response. Pretreatment of demembranated axonemes with a buffer containing 0.25 M sodium acetate for 5 min followed by extraction for 5 min with a buffer containing 0.5 M NaCl and resolution of the extracted dynein on a sucrose density gradient generally yields a 30S dynein that is activated by calmodulin in a heterogeneous manner, ie, the “light” 30S dynein ATPase fractions are more activated than the “heavy” 30S dynein fractions. These results demonstrate specific anion effects on the basal and calmodulin-activated dynein ATPase activities, on the extractability of proteins from the axoneme, and on the turbidity response of demembranated axonemes to ATP. They also provide a method that frequently yields 30S dynein fractions with ATPase activities that are activated over twofold by added calmodulin.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 24 (1984), S. 373-384 
    ISSN: 0730-2312
    Keywords: dyneins ; calmodulin ; cilia ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cilia from the protozoan Tetrahymena pyriformis were demembranated and then extracted for 5 min with a buffer containing 0.5 M NaCl. The briefly extracted axonemal pellet was then reextracted for about 20 hr. The soluble material obtained from each extraction was resolved into 14S and 30S dynein ATPases by sedimentation on sucrose density gradients and tested for sensitivity to added calmodulin. The 14S dynein obtained by a 5-min extraction was generally insensitive to added calmodulin, whereas that obtained by 20-hr extraction of the 5-min extracted axonemes was activated by calmodulin, the activation being much larger in the “light” 14S fractions than in the “heavy” fractions. The 30S dynein ATPase obtained by a 5-min extraction was generally activated over 1.6-fold by added calmodulin, whereas that obtained by the subsequent long extraction was usually activated only 1.3-fold. After further purification of the 5-min extracted 30S dynein and of the 5-min to 20-hr-extracted 14S dynein on DEAE-Sephacel, these dyneins retained much of their calmodulin activatability. The ATPase activity of both 14S and 30S dyneins was inhibited more strongly by erythro-9-[3-(2-hydroxynonyl)] adenine and by vanadate in the presence of added calmodulin than in its absence. These data suggest that the only ATPase activity present in the fractions studied is that of the dyneins and demonstrate that both the 14S and 30S dynein ATPases may be obtained in forms mat are activated by added calmodulin as well as in forms that are insensitive to added calmodulin.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 7 (1977), S. 205-211 
    ISSN: 0091-7419
    Keywords: cilia ; Ca2+-sensitivity ; N-ethylmaleimide ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The pellet height response (a measure of the increase in height of the pellet of cilia obtained by brief centrifugation in the presence of ATP as compared to the absence of ATP) of Tetrahymena cilia prepared by deciliation in the presence of Ca2+ is sensitive to the concentration of free Ca2+ during the pellet height assay. The magnitude of the increase in pellet height and the sharpness of the pellet boundary both increase markedly with increasing [Ca2+]. The half-maximal effect is attained at a free [Ca2+] of about 1.5 × 10-7 M. The pellet height assay thus measures a Ca2+-sensitive component of the ciliary motile system. The possibility that this is the Ca2+-sensitive orientation system is discussed.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...