Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1432
    Keywords: Key words: Thioredoxins — Introns — Phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. In contrast to prokaryotes, which typically possess one thioredoxin gene per genome, three different thioredoxin types have been described in higher plants. All are encoded by nuclear genes, but thioredoxins m and f are chloroplastic while thioredoxins h have no transit peptide and are probably cytoplasmic. We have cloned and sequenced Arabidopsis thaliana genomic fragments encoding the five previously described thioredoxins h, as well as a sixth gene encoding a new thioredoxin h. In spite of the high divergence of the sequences, five of them possess two introns at positions identical to the previously sequenced tobacco thioredoxin h gene, while a single one has only the first intron. The recently published sequence of Chlamydomonas thioredoxin h shows three introns, two at the same positions as in higher plants. This strongly suggests a common origin for all cytoplasmic thioredoxins of plants and green algae. In addition, we have cloned and sequenced pea DNA genomic fragments encoding thioredoxins m and f. The thioredoxin m sequence shows only one intron between the regions encoding the transit peptide and the mature protein, supporting the prokaryotic origin of this sequence and suggesting that its association with the transit peptide has been facilitated by exon shuffling. In contrast, the thioredoxin f sequence shows two introns, one at the same position as an intron in various plant and animal thioredoxins and the second at the same position as an intron in thioredoxin domains of disulfide isomerases. This strongly supports the hypothesis of a eukaryotic origin for chloroplastic thioredoxin f.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: ammonium ; gene expression ; glutamine synthetase ; nodules ; positive element ; promoter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to identify important promoter elements controlling the ammonium-regulated expression of the soybean gene GS15 encoding cytosolic glutamine synthetase, a series of 5′ promoter deletions were fused to the GUS reporter gene. To allow the detection of positive and negative regulatory elements, a series of 3′ deletions were fused to a −90 CaMV 35S promoter fragment placed upstream of the GUS gene. Both types of construct were introduced into Lotus corniculatus plants and soybean roots via Agrobacterium rhizogenes-mediated transformation. Both spectrophotometric enzymatic analysis and histochemical localization of GUS activity in roots, root nodules and shoots of transgenic plants revealed that a strong constitutive positive element (SCPE) of 400 bp, located in the promoter distal region is indispensable for the ammonium- regulated expression of GS15. Interestingly, this SCPE was able to direct constitutive expression in both a legume and non- legume background to a level similar to that driven by the CaMV 35S full-length promoter. In addition, results showed that separate proximal elements, located in the first 727 bp relative to the transcription start site, are essential for root- and root nodule-specific expression. This proximal region contains an AAAGAT and two TATTTAT consensus sequences characteristic of nodulin or nodule-enhanced gene promoters. A putative silencer region containing the same TATTTAT consensus sequence was identified between the SCPE and the organ-specific elements. The presence of positive, negative and organ-specific elements together with the three TATTTAT consensus sequences within the promoter strongly suggest that these multiple promoter fragments act in a cooperative manner, depending on the spatial conformation of the DNA for trans-acting factor accessibility.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: cell divison ; plant ; RNA-binding protein ; RNA recognition motifs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An Arabidopsis thaliana cDNA encoding a new RNA-binding protein (RBP37) was cloned from a silique cDNA library. The predicted amino acid sequence corresponds to a RBP containing two RNA recognition motifs (RRM) and a basic domain. An affinity for nucleic acids was confirmed in binding assays using in vitro synthesised AtRBP37 protein. In situ hybridisation experiments on sections of flowers and siliques showed expression only in growing organs: gynoecium, petals, filaments and during early-embryogenesis expression is located in the embryo proper and the suspensor up to late heart stage. Expression is not detected in the embryo during maturation.This results suggests an expression pattern correlated with dividing cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...