Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Hysteresis diagrams ; Muscle dimensions ; Passive force ; Sinusoidal stretching
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The dynamic passive response of the left gastrocnemius medialis muscle of thirty male Wistar rats was studied as a function of muscle dimensions and absolute and relative amount of connective tissue. Values of the absolute active and passive length-force curves (active force, passive force, active working range) correlated well (coefficients of correlation in a range of 0.62–0.92) with morphological variables (such as muscle optimum length, mean muscle fibre optimum length, physiological cross section, muscle weight and amount of intramuscular connective tissue). To eliminate dimensional effects the active and passive length-force curves were normalized taking maximal active twitch force and muscle optimum length as reference values (100%). The width of the normalized active length-force curve (relative active working range) was correlated negatively with muscle weight, muscle optimum length and physiological cross section. Relative amount of connective tissue and passive tension at optimum length (both independent of muscle dimensions) were positively correlated, indicating that passive muscles are stiffer when relative amount of intramuscular connective tissue is higher. Sinusoidal movements with several amplitudes and frequencies of movement were imposed on the passive gastrocnemius medialis muscle over a range of muscle lengths. In accordance with the approximately exponential increase of static passive muscle force with length, muscle length has a large influence on the shape and magnitude of the hysteresis diagrams resulting from sinusoidal movements: the value of all variables selected increases approximately exponentially with muscle length with the exception of the value of loss tangent, a factor indicating the amount of energy dissipated during each cycle relative to the amount of energy stored and released elastically. Velocity of movement has only minor influence on variables of the hysteresis diagrams as is shown by changing the frequency of movement. As loss tangent and relative amount of connective tissue did not vary with muscle dimensions in the muscles studied, it is likely that material properties of the components causing passive resistance were similar in these muscles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 187 (1986), S. 247-258 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Length-force relations, both active and passive, and twitch contraction characteristics were quantified for left medial gastrocnemius muscles of four young, four adult, and four old male Wistar rats. Muscle and bundle optimum length and muscle weight were also determined and subsequently used for calculation of a number of morphological characteristics of the muscles. Fiber optimum length was derived from muscle bundle optimum length. Generally, physiological characteristics remained constant during growth. There was no change either in active tension at muscle optimum length or in active working range relative to fiber optimum length, relative passive fiber stiffness, active force relative to passive force at optimum length, twitch contraction time and twitch half relaxation time at optimum length. A number of morphological changes, however, did take place in the medial gastrocnemius muscle during growth. Fiber optimum length increased but only by about 2 mm from youth to old age, whereas muscle optimum length increased by approximately 14 mm, presumably owing to extensive hypertrophy of the muscle fibers during growth. The priority for force of the medial gastrocnemius muscle (defined as the quotient of physiological cross-sectional area of a muscle and the cubed root of its volume, a measure independent of architecture and dimensions of muscles) increased during growth. This increase indicates that during growth the muscle shifts relatively more towards force generation than towards excursion generation. These findings are discussed in view of existing scaling theories.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...