Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4919
    Keywords: S-protein ; liver ; cell adhesion protein ; complement ; blood clotting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Summary Human S-protein is a serum glycoprotein that binds and inhibits the activated complement complex, mediates coagulation through interaction with antithrombin III and plasminogen activator inhibitor I, and also functions as a cell adhesion protein through interactions with extracellular matrix and cell plasma membranes. A full length cDNA clone for human S-protein was isolated from a lambda gt11 cDNA library of mRNA from the HepG2 hepatocellular carcinoma cell line using mixed oligonucleotide sequences predicted from the amino-terminal amino acid sequence of human S-protein. The cDNA clone in lambda was subcloned into pUC18 for Southern and Northern blot experiments. Hybridization with radiolabeled human S-protein cDNA revealed a single copy gene encoding S-protein in human and mouse genomic DNA. In addition, the S-protein gene was detected in monkey, rat, dog, cow and rabbit genomic DNA. A 1.7 Kb mRNA for S-protein was detected in RNA from human liver and from the PLC/PRF5 human hepatoma cell line. No S-protein mRNA was detected in mRNA from human lung, placenta, or leukocytes or in total RNA from cultured human embryonal rhabdomyosarcoma (RD cell line) or cultured human fibroblasts from embryonic lung (IMR90 cell line) and neonatal foreskin. A 1.6 Kb mRNA for S-protein was detected in mRNA from mouse liver and brain. No S-protein mRNA was detected in mRNA from mouse skeletal muscle, kidney, heart or testis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 139 (1989), S. 484-491 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have derived serum-free mouse embryo (SFME) cultures in a basal nutrient medium supplemented with insulin, transferrin, epidermal growth factor (EGF), high-density lipoprotein (HDL), and fibronectin. These cells are nontumorigenic, lack gross chromosomal aberrations, and exhibit several other unique properties, including dependence on EGF for survival and growth inhibition by serum. We have examined the concentration dependence of the growth stimulatory effects of protein supplements used in the SFME medium formulation and surveyed other supplements that might act as alternative or complementary additions to the culture medium. Insulin could be replaced by insulin-like growth factor I and EGF could be replaced by transforming growth factor alpha in the same concentration range. Transferrin could be replaced by higher concentrations of lactoferrin. Deterioration of cultures in the absence of EGF began within 8 hours of the removal of the growth factor, and could be prevented by the addition of fibroblast growth factor/heparin-binding growth factor. Attachment proteins other than fibronectin were effective on SFME cells, but limited success was obtained when substituting other lipid preparations for HDL. These data introduce a precise system for exploring the unusual characteristics of SFME cells and contribute additional information that may be useful in the extension of these approaches to other cell types and species.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...