Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 6132-6138 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Quantum control over molecular alignment rephasing is experimentally investigated in gaseous CO2. The control process is achieved by illuminating the medium with a pair of pump-pulses separated in time by approximately an integer value of T0=1/8B0, where B0 is the rotational constant. Through a Raman-type process, each pulse alone produces rotational coherence leading to a periodic orientational anisotropy. It is the combination of the two pulses that yields to quantum interference, resulting in a modification of this anisotropy probed by a third delayed pulse. The effect is accurately analyzed for different time delays between the two pulses. A theoretical analysis supplies a clear understanding of the role played by the different rotational motions involved in the overall process. The relative orientation of the electric field vector for the two pulses is discussed in terms of an additional control parameter. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 3598-3603 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Recently, we have demonstrated the ability of the Raman-induced polarization spectroscopy (RIPS) technique to accurately determine concentration or polarizability anisotropy ratio in low-pressure binary molecular mixtures [E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000)]. It has been also pointed out that macroscopic interference, occurring when two revivals associated to different molecules time overlap, can be used to achieve measurements with picosecond time resolution. The applicability of the technique is intrinsically limited to a concentration range where the signals of both molecules are of the same magnitude. In this paper, a two-pump pulse sequence with different intensities is used to overcome this limitation. The relative molecular responses are weighted by the relative laser pump intensities to give comparable signals. Furthermore, by tuning the time delay between the two-pump pulses, macroscopic interference can be produced regardless of the accidental coincidences between the two molecular temporal responses. The study is performed in a CO2–N2O gas mixture and the concentration is measured with and without macroscopic interference. Applications of the method in the field of noninvasive diagnostics of combustion media are envisaged. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: This study demonstrates that virtually homogenous cultures of mouse cerebral neurons, obtained from 15-day-old embryos, differentiate at least as well as cultures which in addition contain astrocytes. This was indicated by glutamate decarboxylase activity which within 2 weeks rose from a negligible value to twice the level in the adult mouse cerebral cortex, and by a γ-aminobutyric acid (GABA) uptake rate which quadrupled during the second week in culture and reached higher values than in brain slices. Within the same period, the GABA content increased four to five times to 75 nmol/mg protein, and a potassium-induced increase in [14C]GABA efflux became apparent. Although the development was faster than in vivo, optimum differentiation required maintenance of the cultures beyond the age of 1 week. Uptake and release rates for glutamate and glutamine underwent much less developmental alteration. At no time was there any potassium-induced release of radioactivity after exposure to [14C]glutamate, and the glutamate uptake was only slightly increased during the period of GABAergic development. This indicates that exogenous glutamate is not an important GABA precursor. Similarly, glutamine uptake was unaltered between days 7 and 14, although a small potassium-induced release of radioactivity after loading with glutamine suggests a partial conversion to GABA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Biomembranes 942 (1988), S. 333-340 
    ISSN: 0005-2736
    Keywords: (Human blood) ; Erythrocyte membrane ; Spectrin thiol ; Thermal stability
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-6903
    Keywords: Astrocytes ; cerebellum ; glutamate ; granule cells ; monoamine oxidase ; phenylethylamine ; serotonin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Activities of monoamine oxidase (MAO) A and B were measured during the first month of postnatal development in mouse cerebellum and in primary cultures of either cerebellar granule cells or cerebellar astrocytes, derived from 7-day-old cerebella. In addition, effects of the two monoamines, serotonin (a MAO A substrate) and phenylethylamine (a MAO B substrate) on the release of glutamate under resting conditions and in a transmitter related fashion (i.e., potassium-induced, calcium-dependent glutamate release) were studied during the same period. Both MAO A and MAO B activities increased during in vivo development (beginning around postnatal day 14) and in cultured astrocytes (during a comparable time period and to a similar extent), but remained constant at a low level in granule cells. In 4-day-old cerebellar granule cell cultures there was no potassium-induced glutamate release but serotonin as well as phenylethylamine reduced the release in both the presence and absence of excess potassium. In 8- and 12-day-old granule cell cultures and in 8- and 18-day old astrocyte cultures there was a pronounced glutamate release during superfusion with 50 mM K+. In both neurons and astrocytes this response was inhibited by 1 nM of either serotonin or phenylethylamine. In the astrocytes the inhibition was followed by an increased release of glutamate in both the presence and absence of the high potassium concentration, whereas the 8-day-old neurons showed only a slight increase in glutamate release after the with-drawal of the monoamine and only in the absence of excess potassium. The response was almost identical in 8-and 18-day-old astrocytes in spite of the marked difference in MAO activities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-6903
    Keywords: Glutamate metabolism ; astrocytes ; neurons ; effects of ammonia and β-methylene-dl-aspartate ; aspartate aminotransferase ; malate-aspartate shuttle ; aspartate ; glutamine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of ammonium chloride (3 mM) and β-methylene-dl-aspartate (BMA; 5 mM) (an inhibitor of aspartate aminotransferase, a key enzyme of the malate-aspartate shuttle (MAS)) on the metabolism of glutamate and related amino acids were studied in primary cultures of astrocytes and neurons. Both ammonia and BMA inhibited14CO2 production from [U-14C]-and [1-14C]glutamate by astrocytes and neurons and their effects were partially additive. Acute treatment of astrocytes with ammonia (but not BMA) increased astrocytic glutamine. Acute treatment of astrocytes with ammonia or BMA decreased astrocytic glutamate and aspartate (both are key components of the MAS). Acute treatment of neurons with ammonia decreased neuronal aspartate and glutamine and did not apparently affect the efflux of aspartate from neurons. However, acute BMA treatment of neurons led to decreased neuronal glutamate and glutamine and apparently reduced the efflux of aspartate and glutamine from neurons. The data are consistent with the notion that both ammonia and BMA may inhibit the MAS although BMA may also directly inhibit cellular glutamate uptake. Additionally, these results also suggest that ammonia and BMA exert differential effects on astroglial and neuronal glutamate metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...