Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 52 (1994), S. 33-56 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We use molecular dynamics, electrostatic, and quantumchemical calculations to discuss chromophore and protein structural changes as well as proton transfer pathways in the first half of the bacteriorhodopsin photocycle. A model for the molecular mechanism is presented, which accounts for the complex pH dependence of the proton release and uptake pattern found for the M intermediates. The results suggest that transient transfer of the Schiff base proton to a nearby tightly bound water molecule is the primary step, which is accompanyied by dissipation of free energy to the protein. From there, the energetically most favorable proton transfer is to aspartate D85. Arginine R82 is involved in the protein reorientation switch, which catalyzes the pKa reduction of glutamate E204. This residue is, therefore, identified as extracellular proton release group whose acid base equilibrium regulates the pH-dependent splitting of the photocycle. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...