Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 1827-1838 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The objectives of this research were to investigate the growth of immobilized yeast cells in k-carrageenan gel and study the effect of trapping hydroxyapatite (tricalcium phosphate) crystals into the matrix. Using k-carrageenan, the final number of cells per milliliter of gel is at least an order of magnitude higher than free cells per milliliter of medium. A “cell retention” theory explaining this cell concentration difference was proposed. Coexistence of yeast cells and an additional agent such as tricalcium phosphate results in sustained viability through internal pH control, increased cell loading, greater settling velocity, and enhanced ethanol production.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 33 (1989), S. 886-895 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An important factor complicating the recovery of recombinant proteins from Escherichia coli is their intracellular location. An alternative to the commonly used method of releasing these proteins by mechanical disruption is to chemically permeabilize the cells. The objective of this research was to characterize the protein release kinetics of a permeabilization process using guanidine-HCl and Triton X100. The protein release rate and yield were determined as a function of the guanidine and Triton concentrations. The initial release rate increased monotonically with increasing concentrations of Triton and guanidine whereas the release yield varied in a complex manner. Electron microscopy indicated that the permeabilization process involves a solubilization of the inner membrane and molecular alteration of the outer wall. Some advantages of this process over mechanical disruption include avoiding extensive fragmentation of the cells and retainment of nucleic acids inside the cell structure.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...