Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1017
    Keywords: Conformational energy calculations ; Protein conformation ; Molecular mechanics ; Proteinase inhibitor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Summary The molecular conformation of the basic pancreatic trypsin inhibitor (BPTI) is known in considerable detail from both X-ray studies in single crystals and NMR studies in solution. The NMR experiments showed that the aromatic rings of the phenylalanyl and tyrosyl residues can undergo rapid rotational motions about the Cβ-Cγ bond. The present paper describes a model investigation of the mechanistic aspects of these intramolecular rotational motions. From calculations of the conformational energies for molecular species derived from the X-ray structure by rotations of individual aromatic rings, it was apparent that the rotational motions of the aromatics could only be understood in a flexible structure. Flexibility was simulated by allowing the protein to relax to an energetically favorable conformation for each of the different rotation states of the aromatic rings. It was then of particular interest to investigate how the perturbations caused by different rotation states of the aromatic rings were propagated in the protein structure. It was found that the rotation axes Cβ-Cγ were only slightly affected (Δχ 1≲20°). The most sizeable perturbations are caused by through space interactions with nearby atoms, which move away from the ring center and thus release the steric hindrance opposing the rotational motions. The values for the energy barriers obtained from the energy minimization are of the same order of magnitude as those measured by NMR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2589-2606 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Empirical conformational energy calculations with the use of ECEPP energy functions have been carried out for linear dipeptides H-X-L-Pro-OH, with X = Gly, L-Ala, D-Ala, L-Leu, D-Leu, L-Phe, and D-Phe, in different states of protonation of the end groups. The results of these calculations are compared with the previously reported experimental equilibrium populations for the cis and trans isomers of the X-Pro bond in the different species. For all the protonation states of the seven dipeptides, the calculated nonbonded interactions and the conformational entropy term lead to a preference of the trans forms over the cis isomers by at least 1 kcal/mol. The electrostatic interactions stabilize the cis conformations in all species except the cationic forms of the D,L-peptides, and it could further be shown that only the carbonyl group of X and the two end groups contribute significantly to the total electrostatic energy. One of the principal results of the experimental studies, i.e., the occurrence of 5-15% cis-proline in all the peptides with an uncharged C-terminus, was corroborated by our investigation of the cationic species. A detailed assessment of the electrostatic contribution to the total energy of the different conformations of H-Gly-L-Pro-OH indicates that the standard ECEPP parameters tend to overestimate the electrostatic interactions in aqueous solutions of the X-Pro dipeptides.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...