Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 36 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Purification of rat cerebral cortex fructose- l,6-biphosphatase (FBPase) was performed by substrate elution from phosphocellulose, followed by Sephadex G-200 column filtration. The purified enzyme exhibited an optimum at pH 7.5, and its catalytic properties were very similar to those of the purified whole-brain enzyme previously prepared by Majumder and Eisenberg in 1977. The isolated preparation was electrophoretically homogeneous. The molecular weight of the enzyme subunit was 40,000; the hydrophobic amino acids predominated with 592 residues, and tryptophan was not detected. Expressed as μmol fructose-1,6-biphosphate hydrolysed per g brain tissue wet weight per min, FBPase activity increased twofold 24 h after an intrapentoned injection of 100 mg per kg body weight of the convulsant methionine sulfoximine (MSO); the increase of the rate of incorporation of [1-14C]valine into brain FBPase was 2.8-fold under the same experimental conditions. A rabbit specific antiserum against rat cerebral cortex FBPase was prepared, and immunotitration studies confirmed both an increase in the number of molecules and the activation of brain FBPase, 24 h after administration of MSO. The increase of the number of brain FBPase molecules, induced by MSO, was due to an increase in synthesis of the enzyme, as shown by a double-label valine incorporation study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Accumulation of δ-aminolevulinic acid (ALA), as it occurs in acute intermittent porphyria (AIP), is the origin of an endogenous source of reactive oxygen species (ROS), which can exert oxidative damage to cell structures. In the present work we examined the ability of different antioxidants to revert ALA-promoted damage, by incubating mouse astrocytes with 1.0 mm ALA for different times (1–4 hr) in the presence of melatonin (2.5 mm), superoxide dismutase (25 units/mL), catalase (200 units/mL) or glutathione (0.5 mm). The defined relative index [(malondialdehyde levels/accumulated ALA) × 100], decreases with incubation time, reaching values of 76% for melatonin and showing that the different antioxidants tested can protect astrocytes against ALA-promoted lipid peroxidation. Concerning porphyrin biosynthesis, no effect was observed with catalase and superoxide dismutase whereas increases of 57 and 87% were obtained with glutathione and melatonin, respectively, indicating that these antioxidants may prevent the oxidation of porphobilinogen deaminase, reactivating so that the AIP genetically reduced enzyme. Here we showed that ALA induces cell death displaying a pattern of necrosis. This pattern was revealed by loss of cell membrane integrity, marked nuclear swelling and double labeling with annexin V and propidium iodide. In addition, no caspase 3-like activity was detected. These findings provide the first experimental evidence of the involvement of ALA-promoted ROS in the damage of proteins related to porphyrin biosynthesis and the induction of necrotic cell death in astrocytes. Interestingly, melatonin decreases the number of enlarged nuclei and shows a protective effect on cellular morphology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...