Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: 1-Methyl-4-phenylpyridinium (MPP+), the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, induces apoptosis in cerebellar granule neurons (CGNs). We have tested the hypothesis that organic cation transporter (OCT) 3 mediates the accumulation and, hence, the toxicity of MPP+ in CGNs. CGNs in primary culture express OCT3 but do not express mRNA for OCT1, OCT2 or the dopamine transporter. Cerebellar astrocytes are negative for OCT3 protein by immunocytochemistry. [3H]MPP+ accumulation by CGNs exhibits first-order kinetics, and a Kt value of 5.3 ± 1.2 µm and a Tmax of 0.32 ± 0.02 pmol per min per 106 cells. [3H]MPP+ accumulation is inhibited by corticosterone, β-estradiol and decynium 22 with Ki values of 0.25 µm, 0.17 µm and 4.0 nm respectively. [3H]MPP+ accumulation is also inhibited by desipramine, dopamine, serotonin and norepinephrine, but is not affected by carnitine (10 mm), mazindol (9 µm) or GBR 12909 (1 µm). MPP+-induced caspase-3-like activation and cell death are prevented by pretreatment with 5 µmβ-estradiol. In contrast, the neurotoxic effects of rotenone are unaffected by β-estradiol. Interestingly, GBR 12909 protects CGNs from both MPP+ and rotenone toxicity. In summary, CGNs accumulate MPP+ in manner that is consistent with uptake via OCT3 and the presence of this protein in CGNs explains their sensitivity to MPP+ toxicity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 60 (1993), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Chronic exposure of rats to nicotine increases the number of [3H]nicotine binding sites in the brain; however, it is not clear whether nicotinic cholinergic receptor function is altered as well. In this study, we have used [3H]tetraphenylphosphonium as a probe of synaptosomal membrane potential to investigate whether exposure to nicotine in vivo alters the ability of cerebral cortical synaptosomes to maintain a potential difference and to depolarize in response to in vitro nicotine. Treatment of rats for 14 days with 0.475 mg of nicotine base/day via subcutaneously implanted minipumps resulted in a decrease in the synaptosomal accumulation of [3H]tetraphenylphosphonium in physiological buffer, corresponding to a decrease in estimated membrane potential from –55 mV to –50 mV. The onset of the decrease in membrane potential occurred after 7 days of in vivo nicotine treatment and was significantly correlated with an increase in [3H]nicotine binding to cerebral cortical synaptosomal (P2) membranes. Nicotine, at in vitro concentrations of 3–1,000 μM, decreased [3H]tetraphenylphosphonium accumulation in cerebral cortical synaptosomes from control animals. When compared to accumulation in buffer alone, in vitro nicotine and other nicotinic agonists did not significantly decrease [3H]tetraphenylphosphonium accumulation in cerebral cortical synaptosomes prepared from rats treated with nicotine in vivo. These studies provide evidence that chronic treatment with nicotine results in an average lower membrane potential in cerebral cortical synaptosomes and in functional down-regulation of the depolarization response to nicotinic cholinergic receptor stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Ligand binding to the cannabinoid receptor of brain membranes has been characterized using [3H]CP 55,940 and the Multiscreen Filtration System. Binding of [3H]CP 55,940 is saturable and reaches equilibrium by 45 min at room temperature. At a concentration of 10 µg of membrane protein/well, the KD for [3H]CP 55,940 is 461 pM and the Bmax is 860 fmol/mg of protein. The apparent KD of [3H]CP 55,940 is dependent upon tissue protein concentration, increasing to 2,450 pM at 100 µg of membrane protein. Binding of [3H]CP 55,940 is dependent upon the concentration of bovine serum albumin in the buffer; the highest ratio of specific to nonspecific binding occurs between 0.5 and 1.0 mg/ml. The Ki of anandamide, a putative endogenous ligand of the cannabinoid receptor, is 1.3 µM in buffer alone and 143 nM in the presence of 0.15 mM phenylmethylsulfonyl fluoride. When [14C]anandamide is incubated with rat forebrain membranes at room temperature, it is degraded to arachidonic acid; the hydrolysis is inhibited by 0.15 mM phenylmethylsulfonyl fluoride. These results support the hypothesis that anandamide is a high-affinity ligand of the cannabinoid receptor and that it is rapidly degraded by membrane fractions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Two putative endocannabinoids, N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol, are inactivated by removal from the extracellular environment by a process that has the features of protein-mediated facilitated diffusion. We have synthesized and studied 22 N-linked analogues of arachidonylamide for the purpose of increasing our understanding of the structural requirements for the binding of ligands to the AEA transporter. We have also determined the affinities of these analogues for both the CB1 cannabinoid receptor and fatty acid amide hydrolase (FAAH). We have identified several structural features that enhance binding to the AEA transporter in cerebellar granule cells. We have confirmed the findings of others that replacing the ethanolamine head group with 4-hydroxybenzyl results in a high-affinity ligand for the transporter. However, we find that the same molecule is also a competitive inhibitor of FAAH. Similarly, replacement of the ethanolamine of AEA with 3-pyridinyl also results in a high-affinity inhibitor of both the transporter and FAAH. We conclude that the structural requirements for ligand binding to the CB1 receptor and binding to the transporter are very different; however, the transporter and FAAH share most, but not all, structural requirements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: N-Arachidonoylethanolamine (anandamide, AEA) is a putative endogenous ligand of the cannabinoid receptor. Intact cerebellar granule neurons in primary culture rapidly accumulate AEA. [3H]AEA accumulation by cerebellar granule cells is dependent on incubation time (t1/2 of 2.6 ± 0.8 min at 37°C) and temperature. The accumulation of AEA is saturable and has an apparent Km of 41 ± 15 µM and a Vmax of 0.61 ± 0.04 nmol/min/106 cells. [3H]AEA accumulation by cerebellar granule cells is significantly reduced by 200 µM phloretin (57.4 ± 4% of control) in a noncompetitive manner. [3H]AEA accumulation is not inhibited by either ouabain or removal of extracellular sodium. [3H]AEA accumulation is fairly selective for AEA among other naturally occurring N-acylethanolamines; only N-oleoylethanolamine significantly inhibited [3H]AEA accumulation at a concentration of 10 µM. The ethanolamides of palmitic acid and linolenic acid were inactive at 10 µM. N-Arachidonoylbenzylamine and N-arachidonoylpropylamine, but not arachidonic acid, 15-hydroxy-AEA, or 12-hydroxy-AEA, compete for AEA accumulation. When cells are preloaded with [3H]AEA, temperature-dependent efflux occurs with a half-life of 1.9 ± 1.0 min. Phloretin does not inhibit [3H]AEA efflux from cells. These results suggest that AEA is accumulated by cerebellar granule cells by a protein-mediated transport process that has the characteristics of facilitated diffusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The hypothesis of these studies is that ligand efficacy atthe neuronal CB1 receptor is dependent on the ratio of ligand affinities forthe active and inactive states of the receptor. Agonist efficacy wasdetermined in rat cerebellar membranes using agonist-induced guanosine5′-O-(3-[35S]thiotriphosphate) binding; efficacy wasvariable among the CB1 agonists examined. Ligand affinities for the active andinactive state of the CB1 receptor were determined by competition with[3H]CP55940 and [3H]SR141716A in the presence of 5′-guanylylimidodiphosphate, respectively. All of the agonists investigated had a higher affinity for the active state than the inactive state. The fraction of CB1 receptors in the active state at a maximally effective concentration was calculated for each agonist and was found to correlate significantly with agonist efficacy. These studies demonstrate that the CB1 receptor of the cerebellum can assume an active conformation in the absence of agonist and that the variability in efficacy among CB1 receptor agonists can be explained by the relative affinities of these ligands for the CB1 receptor in the active and inactive states.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The cannabinoid system is known to be important in neuronal regulation, but is also capable of modulating immune function. Although the CNS resident microglial cells have been shown to express the CB2 subtype of cannabinoid receptor during non-immune-mediated pathological conditions, little is known about the expression of the cannabinoid system during immune-mediated CNS pathology. To examine this question, we measured CB2 receptor mRNA expression in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) and, by real-time PCR, found a 100-fold increase in CB2 receptor mRNA expression during EAE onset. We next determined whether microglial cells specifically express the CB2 receptor during EAE, and found that activated microglial cells expressed 10-fold more CB2 receptor than microglia in the resting state. To determine the signals required for the up-regulation of the CB2 receptor, we cultured microglial cells with combinations of γ-interferon (IFN-γ) and granulocyte) macrophage-colony stimulating factor (GM-CSF), which both promote microglial cell activation and are expressed in the CNS during EAE, and found that they synergized, resulting in an eight to 10-fold increase in the CB2 receptor. We found no difference in the amount of the CB2 receptor ligand, 2-arachidonylglycerol (2-AG), in the spinal cord during EAE. These data demonstrate that microglial cell activation is accompanied by CB2 receptor up-regulation, suggesting that this receptor plays an important role in microglial cell function in the CNS during autoimmune-induced inflammation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 21 (2005), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The role of endocannabinoid (eCB) signalling in restraint stress-induced neuronal activation was studied. Male mice exposed to 30 min of restraint exhibit increased Fos protein within prefrontal cortex (PFC), lateral septum (LS), nucleus accumbens (Acb) and medial amygdala. SR141716 (2 mg/kg) itself had no effect on Fos but pretreatment with SR141716 significantly potentiated restraint-induced Fos expression in cingulate, LS and Acb. SR141716 also significantly increased the time spent in active escape behaviours during the restraint. In restraint-habituated mice (mice exposed to four previous restraint episodes), the fifth restraint exposure resulted in decreased expression of active escape behaviours compared to the first exposure and only induced Fos protein in the central and medial amygdala. Administration of SR141716 prior to the fifth restraint episode resulted in greater potentiation of restraint-induced Fos induction than the first; significant increases occurred within all regions of PFC examined, LS and Acb. Brain regional eCB content was measured immediately after restraint. N-arachidonylethanolamine content within the amygdala was significantly decreased after both restraint episodes. 2-Arachidonylglycerol content was significantly increased in both the limbic forebrain and amygdala after the fifth restraint but not the first. Restraint had no effect on cerebellar eCB content. These data suggest that eCB activation of CB1 receptors opposes the behavioural and neuronal responses to aversive stimuli. Because repeated homotypic stress increased both limbic 2-AG and resulted in a greater effect of SR141716 on limbic Fos expression, we hypothesize that increased CB1 receptor activity contributes to the expression of habituation to homotypic stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Neuronal cannabinoid receptors (CB1) are coupled to inhibition of voltage-sensitive Ca2+ channels (VSCCs) in several cell types. The purpose of these studies was to characterize the interaction between endogenous CB1 receptors and VSCCs in cerebellar granule neurons (CGN). Ca2+ transients were evoked by KCl-induced depolarization and imaged using fura-2. The CB1 receptor agonists CP55940, Win 55212–2 and N-arachidonylethanolamine (anandamide) produced concentration-related decreases in peak amplitude of the Ca2+ response and total Ca2+ influx. Pre-treatment of CGN with pertussis toxin abolished agonist-mediated inhibition. The inhibitory effect of Win 55212–2 on Ca2+ influx was additive with inhibition produced by ω-agatoxin IVA and nifedipine but not with ω-conotoxin GVIA, indicating that N-type VSCCs are the primary effector. Paradoxically, the CB1 receptor antagonist, SR141716, also inhibited KCl-induced Ca2+ influx into CGN in a concentration-related manner. SR141716 inhibition was pertussis toxin-insensitive and was not additive with the inhibition produced by Win 55212–2. Confocal imaging of CGN in primary culture demonstrate a high density of CB1 receptor expression on CGN plasma membranes, including the neuritic processes. These data demonstrate that the CB1 receptor is highly expressed by CGN and agonists serve as potent and efficacious inhibitory modulators of Ca2+ influx through N-type VSCC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] The cannabinoid system is immunomodulatory and has been targeted as a treatment for the central nervous system (CNS) autoimmune disease multiple sclerosis. Using an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we investigated the role of the CB1 and CB2 ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...