Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Reduced activity of the mitochondrial respiratory chain – particularly complex I – may be implicated in the etiology of both Parkinson's disease and progressive supranuclear palsy, although these neurodegenerative diseases differ substantially as to their distinctive pattern of neuronal cell loss and the predominance of cerebral α-synuclein or tau protein pathology. To determine experimentally whether chronic generalized complex I inhibition has an effect on the distribution of α-synuclein or tau, we infused rats systemically with the plant-derived isoflavonoid rotenone. Rotenone-treated rats with a pronounced metabolic impairment had reduced locomotor activity, dystonic limb posture and postural instability. They lost neurons in the substantia nigra and in the striatum. Spherical deposits of α-synuclein were observed in a few cells, but cells with abnormal cytoplasmic accumulations of tau immunoreactivity were significantly more numerous in the striatum of severely lesioned rats. Abnormally high levels of tau immunoreactivity were found in the cytoplasm of neurons, oligodendrocytes and astrocytes. Ultrastructurally, tau-immunoreactive material consisted of straight 15-nm filaments decorated by antibodies against phosphorylated tau. Many tau+ cell bodies also stained positive for thioflavin S, nitrotyrosine and ubiquitin. Some cells with abnormal tau immunoreactivity contained activated caspase 3. Our data suggest that chronic respiratory chain dysfunction might trigger a form of neurodegeneration in which accumulation of hyperphosphorylated tau protein predominates over deposits of α-synuclein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Degeneration of dopaminergic neurones during Parkinson's disease is most extensive in the subpopulation of melanized-neurones located in the substantia nigra pars compacta. Neuromelanin is a dark pigment produced in the dopaminergic neurones of the human substantia nigra and has the ability to bind a variety of metal ions, especially iron. Post-mortem analyses of the human brain have established that oxidative stress and iron content are enhanced in association with neuronal death. As redox-active iron (free Fe2+ form) and other transition metals have the ability to generate highly reactive hydroxyl radicals by a catalytic process, we investigated the redox activity of neuromelanin (NM)-aggregates in a group of parkinsonian patients, who presented a statistically significant reduction (− 70%) in the number of melanized-neurones and an increased non-heme (Fe3+) iron content as compared with a group of matched-control subjects. The level of redox activity detected in neuromelanin-aggregates was significantly increased (+ 69%) in parkinsonian patients and was highest in patients with the most severe neuronal loss. This change was not observed in tissue in the immediate vicinity of melanized-neurones. A possible consequence of an overloading of neuromelanin with redox-active elements is an increased contribution to oxidative stress and intraneuronal damage in patients with Parkinson's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: There is evidence that an inflammatory microglial reaction participates in the pathophysiology of dopaminergic neuronal death in Parkinson's disease and in animal models of the disease. However, this phenomenon remains incompletely characterized. Using an in vitro model of neuronal/glial mesencephalic cultures, we show that the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) stimulates the proliferation of microglial cells at concentrations that selectively reduce the survival of DA neurones. The mitogenic action of MPP+ was not the mere consequence of neuronal cell demise as the toxin produced the same effect in a model system of neuronal/glial cortical cultures, where target DA neurones are absent. Consistent with this observation, the proliferative effect of MPP+ was also detectable in neurone-free microglial/astroglial cultures. It disappeared, however, when MPP+ was added to pure microglial cell cultures suggesting that astrocytes played a key role in the mitogenic mechanism. Accordingly, the proliferation of microglial cells in response to MPP+ treatment was mimicked by granulocyte macrophage colony-stimulating factor (GM-CSF), a proinflammatory cytokine produced by astrocytes and was blocked by a neutralizing antibody to GM-CSF. Thus, we conclude that the microglial reaction observed following MPP+ exposure depends on astrocytic factors, e.g. GM-CSF, a finding that may have therapeutic implications.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Inactivation of the subthalamic nucleus (STN) or the internal segment of the pallidum (GPi)/entopeduncular nucleus (EP) by deep brain stimulation or lesioning alleviates clinical manifestations of Parkinson's disease (PD) as well as reducing the side-effects of levodopa treatment. However, the effects of STN or entopeduncular nucleus (EP) lesion on levodopa-related motor fluctuations and on neurochemical changes induced by levodopa remain largely unknown. The effects of such lesions on levodopa-induced motor alterations were studied in 6-hydroxydopamine (6-OHDA)-lesioned rats and were assessed neurochemically by analyzing the functional activity of the basal ganglia nuclei, using the expression levels of the mRNAs coding for glutamic acid decarboxylase and cytochrome oxidase as molecular markers of neuronal activity. At the striatal level, preproenkephalin (PPE) mRNA levels were analyzed. We found in 6-OHDA-lesioned rats that a unilateral STN or EP lesion ipsilateral to the 6-OHDA lesion had no effect on either the shortening in the duration of the levodopa-induced rotational response or the levodopa-induced biochemical changes in the basal ganglia nuclei. In contrast, overexpression of PPE mRNA due to levodopa treatment was reversed by the STN or EP lesion. Our study thus shows that lesion of the EP or STN may counteract some of the neurochemical changes induced by levodopa treatment within the striatum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Two biochemical deficits have been described in the substantia nigra in Parkinson's disease, decreased activity of mitochondrial complex I and reduced proteasomal activity. We analysed interactions between these deficits in primary mesencephalic cultures. Proteasome inhibitors (epoxomicin, MG132) exacerbated the toxicity of complex I inhibitors [rotenone, 1-methyl-4-phenylpyridinium (MPP+)] and of the toxic dopamine analogue 6-hydroxydopamine, but not of inhibitors of mitochondrial complex II–V or excitotoxins [N-methyl-d-aspartate (NMDA), kainate]. Rotenone and MPP+ increased free radicals and reduced proteasomal activity via adenosine triphosphate (ATP) depletion. 6-hydroxydopamine also increased free radicals, but did not affect ATP levels and increased proteasomal activity, presumably in response to oxidative damage. Proteasome inhibition potentiated the toxicity of rotenone, MPP+ and 6-hydroxydopamine at concentrations at which they increased free radical levels ≥ 40% above baseline, exceeding the cellular capacity to detoxify oxidized proteins reduced by proteasome inhibition, and also exacerbated ATP depletion caused by complex I inhibition. Consistently, both free radical scavenging and stimulation of ATP production by glucose supplementation protected against the synergistic toxicity. In summary, proteasome inhibition increases neuronal vulnerability to normally subtoxic levels of free radicals and amplifies energy depletion following complex I inhibition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In Guadeloupe, epidemiological data have linked atypical parkinsonism with fruit and herbal teas from plants of the Annonaceae family, particularly Annona muricata. These plants contain a class of powerful, lipophilic complex I inhibitors, the annonaceous acetogenins. To determine the neurotoxic potential of these substances, we administered annonacin, the major acetogenin of A. muricata, to rats intravenously with Azlet osmotic minipumps (3.8 and 7.6 mg per kg per day for 28 days). Annonacin inhibited complex I in brain homogenates in a concentration-dependent manner, and, when administered systemically, entered the brain parenchyma, where it was detected by matrix-associated laser desorption ionization – time of flight mass spectrometry, and decreased brain ATP levels by 44%. In the absence of evident systemic toxicity, we observed neuropathological abnormalities in the basal ganglia and brainstem nuclei. Stereological cell counts showed significant loss of dopaminergic neurones in the substantia nigra (− 31.7%), and cholinergic (− 37.9%) and dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32)-immunoreactive GABAergic neurones (− 39.3%) in the striatum, accompanied by a significant increase in the number of astrocytes (35.4%) and microglial cells (73.4%). The distribution of the lesions was similar to that in patients with atypical parkinsonism. These data are compatible with the theory that annonaceous acetogenins, such as annonacin, might be implicated in the aetiology of Guadeloupean parkinsonism and support the hypothesis that some forms of parkinsonism might be induced by environmental toxins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In Parkinson’s disease, nigrostriatal denervation leads to an overactivity of the subthalamic nucleus and its target areas, which is responsible of the clinical manifestations of the disease. Because the subthalamic nucleus uses glutamate as neurotransmitter and is innervated by glutamatergic fibers, pharmacological blockade of glutamate transmission might be expected to restore the cascade of neurochemical changes induced by a dopaminergic denervation within the basal ganglia. To test this hypothesis, two types of glutamate antagonists, the NMDA receptor antagonist MK-801 and the α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor antagonist LY293558, were administered systemically, either alone or in combination with L-DOPA, in rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal dopamine pathway. The effect of treatment was assessed neurochemically by analyzing at the cellular level the functional activity of basal ganglia output structures and the subthalamic nucleus using the expression levels of the mRNAs coding for glutamic acid decarboxylase and cytochrome oxidase, respectively, as molecular markers of neuronal activity. The present study shows that treatment with glutamate antagonists, and particularly with AMPA antagonists, alone or in combination with L-DOPA, reverses the overactivity of the subthalamic nucleus and its target areas induced by nigrostriatal denervation. These results furnish the neurochemical basis for the potential use of glutamate antagonists as therapeutic agents in Parkinson’s disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: To examine potential alteration of GABAergic striatal neurons in Alzheimer's disease, we used quantitative in situ hybridization to analyze the messenger RNA coding for Mr 67,000 glutamic acid decarboxylase (GAD67 mRNA) in the striatum of five patients with Alzheimer's disease (AD) and nine matched control subjects. We found a 51–57% increase in the optical density of hybridization signal in the caudate nucleus and putamen, corresponding to a 30–42% increase in the number of neurons expressing a detectable amount of GAD67 mRNA. By contrast, no alteration was observed in the ventral striatum. The expression of GAD67 mRNA per neuron was similar in AD and control subjects both in the dorsal and ventral striatum. Taken together, our data indicate that, in AD, GABAergic neurotransmission is increased in the dorsal striatum but not in the ventral striatum. We suggest that this increased GABAergic neurotransmission may explain extrapyramidal signs often observed in AD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The rat parkin cDNA sequence was characterized afterscreening a rat hypothalamus cDNA library with a 32P-labeled probe containing the entire open reading frame of the human parkin cDNA. This sequence encompasses 1,576 bp and contains a single open reading frame that encodes a 465-amino acid protein. The rat parkin amino acid sequence exhibits a very striking homology to the human and mouse parkin, with 85 and 95% identity, respectively. Both the N-terminal ubiquitin and the ring-IBR (in between ring)-ring finger domains appear to be highly conserved among rat, human, and mouse parkin. An affinity-purified polyclonal antibody (ASP5p) was generated with a synthetic peptide corresponding to amino acids 295-311 of the parkin sequence, which is identical in the three species. Western blotting revealed that ASP5p recognizes a single 52-kDa band, which corresponds to the molecular mass of the parkin protein. Immunostaining with ASP5p showed that parkin is principally located in the cytoplasm of neurons that are widely distributed in the rat brain. Parkin-immunoreactive neurons abound in structures that are specifically targeted in Parkinson's disease, e.g., subtantia nigra, but are also present in unaffected structures, e.g., cerebellum. Furthermore, parkin-enriched glial cells can be detected in various nuclei of the rat brain. Thus, the role of parkin may be much more global than previously thought on the basis of genetic findings gathered in cases of early-onset parkinsonism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Bax is a proapoptotic member of the Bcl-2 family of proteins. It is believed to exert its action primarily by facilitating the release of cytochrome c from the mitochondrial intermembrane space into the cytosol, leading to caspase activation and cell death. Because alterations in mitochondrial respiratory function, caspase activation and cell death with morphologic features compatible with apoptosis have been observed post mortem in the brain of patients with Parkinson's disease, we tried to clarify the potential role of Bax in this process in an immunohistochemical study on normal and Parkinson's disease post-mortem brain and primary mesencephalic cell cultures treated with MPP+. We found that Bax is expressed ubiquitously by dopaminergic (DA) neurons in post-mortem brain of normal and Parkinson's disease subjects as well as in vitro. Using an antibody to Bax inserted into the outer mitochondrial membrane as an index of Bax activation, no significant differences were observed between control and Parkinson's disease subjects, regardless of the mesencephalic subregion analysed. However, in Parkinson's disease subjects, the percentage of Bax-positive melanized SNpc neurons containing Lewy bodies, suggestive of DA neuronal suffering, was significantly higher than the overall percentage of Bax-positive neurons among melanized neurons. Furthermore, all melanized SNpc neurons in Parkinson's disease subjects with activated caspase-3 were also immunoreactive for Bax, suggesting that Bax anchored in the outer mitochondrial membrane of melanized SNpc neurons showing signs of neuronal suffering or apoptosis is increased compared with DA neurons that are apparently unaltered. Surprisingly, MPP+ treatment of tyrosine hydroxylase (TH)-positive neurons in primary mesencephalic cultures did not cause redistribution of Bax, although cytochrome c was released from the mitochondria and nuclear condensation/fragmentation was induced. Taken together, these findings suggest that in the human pathology, Bax may be a cofactor in caspase activation, but our in vitro data fail to indicate a central role for Bax in apoptotic death of DA neurons in an experimental Parkinson's disease paradigm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...