Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 6 (1994), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: There have been conflicting reports on the chemical nature of the projection of the pretectal nuclei [nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract (NOT DTN complex) and posterior pretectal nucleus] to the lateral geniculate nucleus and inferior olive. There is evidence that the pretecto-geniculate pathway is inhibitory. However, most attempts to verify the GABAergic nature of the projection neurons have failed. In order to answer this question, we employed a combination of retrograde transport and in situ hybridization. Rhodamine-labelled latex microspheres were injected into the electrophysiologically identified lateral geniculate nucleus. In addition, fluorescein-labelled latex microspheres were injected into the inferior olive. Retrograde axonal transport labelled large pretectal neurons. We then applied riboprobes specific for glutamic acid decarboxylase mRNA. We were able to demonstrate glutamic acid decarboxylase mRNA expression in up to 70% of lateral geniculate nucleus-projecting NOT-DTN and posterior pretectal nucleus neurons but in none of the pretecto-olivary projection neurons. The results suggest that the pretecto-geniculate projection is GABAergic in nature, which would confirm previous electrophysiological and morphological observations. The pretecto-olivary projection is not GABAergic.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 19 (2004), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Electrophysiological studies in animals suggest that visuomotor control of forelimb and eye movements involves reciprocal connections between several areas (striate, extrastriate, parietal, motor and premotor) related to movement performance and visuospatial coding of movement direction. The extrastriate area MT [V5 (hMT+) in humans] located in the ‘dorsal pathway’ of the primate brain is specialized in the processing of visual motion information. The aim of our study was to investigate the functional role of V5 (hMT+) in the control of visually guided hand movements and to identify the corresponding cortex activation implicated in the visuomotor tasks using functional magnetic resonance imaging. Eight human subjects performed visually guided hand movements, either continuously tracking a horizontally moving target or performing ballistic tracking movements of a cursor to an eccentric stationary target while fixating a central fixation cross. The tracking movements were back-projected onto the screen using a cursor which was moved by an MRI-compatible joystick. Both conditions activated area V5 (hMT+), right more than left, particularly during continuous tracking. In addition, a large-scale sensorimotor circuit which included sensorimotor cortex, premotor cortex, striatum, thalamus and cerebellum as well as a number of cortical areas along the intraparietal sulcus in both hemispheres were activated. Because activity was increased in V5 (hMT+) during continuous tracking but not during ballistic tracking as compared to motion perception, it has a pivotal role during the visual control of forelimb movements as well.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 12 (2000), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Using classical neuroanatomical retrograde tracing methods we investigated the retinal ganglion cells projecting to the nucleus of the optic tract and dorsal terminal nucleus of the accessory optic system (NOT-DTN) in macaque monkeys. Our main aim was to quantify the strength of the projection from the ipsilateral retina to the NOT-DTN. We therefore examined the number, distribution, and soma size of retinal ganglion cells involved in this projection. Electrophysiologically controlled small injections into the NOT-DTN revealed a clearly bilateral retinal projection originating mainly from the central retina but also involving peripheral retinal regions. Labelled cells were found nasally in the contralateral retina and temporally in the ipsilateral retina with some overlap in the fovea. The projection from the ipsilateral retina was 36–43% of that from the contralateral retina. On average, only 1–6% of the local population of ganglion cells projected to the NOT-DTN. Small soma size and large dendritic fields imply that in monkey rarely encountered, ‘specialized’ ganglion cells provide the direct retinal input to the accessory optic system (AOS). These results are discussed with respect to the symmetry of monocular horizontal optokinetic nystagmus (OKN) in primates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 10 (1998), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Horizontal optokinetic nystagmus (OKN) as well as neuronal response properties in the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic system (NOT-DTN) were investigated in three monocularly deprived squirrel monkeys. In two monkeys occlusion of one eye was performed at birth (early) and in the third after 7 weeks (late). In adulthood, in early deprived monkeys monocular horizontal OKN tested through the non-deprived eye was symmetrical and in no way different from normal, i.e. stimulation in the temporonasal and nasotemporal direction elicited equal and robust responses. OKN through the early occluded eye, however, was grossly abnormal with low gain and great variability in the consistency of nasotemporal and temporonasal slow phase eye movements. When in the late deprived monkey the non-deprived eye was occluded a strong spontaneous nystagmus developed despite the deprived eye viewing a stationary pattern. The slow phases were directed from nasal to temporal for the deprived eye. When tested through the non-deprived eye all neuronal responses of the NOT-DTN were normal. The deprived eye’s influence on NOT-DTN neurons was extremely weak. No neuron with a moderate or even dominant input from the deprived eye was found after early deprivation. In the late deprived case the deficit was not as severe but still the non-deprived eye was clearly dominating the responses in all neurons tested. Velocity tuning of neurons tested through the non-deprived eye was normal and qualitatively corresponded well to slow phase eye velocity in response to equivalent retinal slip during OKN. Through the early deprived eye, however, velocity tuning was extremely poor. It was somewhat better through the late deprived eye. We suggest that the dramatic deterioration in the optokinetic reflex found after long-term monocular deprivation for the amblyopic eye is probably caused by the almost complete loss of retinal and cortical input driven by that eye to the NOT-DTN. These results are discussed in relation to our previous results in cats and reports in the literature for humans with occlusion amblyopia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 7 (1995), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In this study, the formation of the corticotectal projection of the rat in organotypic slice culture was investigated, using both anatomical and physiological approaches. The establishment of fibre connections from visual cortex to superior colliculus explants was monitored after 3, 6, 14, 20 and 30 days in vitro by cortical injections of Dil. As in cortical cultures without cocultured colliculus, fibres anterogradely labelled by this procedure spread radially from the injection site into the surroundings of the explant, without displaying any directional preference. Especially, layer V pyramidal cells could be seen to extend processes not only to the collicular target, but also in the opposite direction, suggesting that no axonal guidance was exerted by the projection target. The total number of fibres projecting in the direction of the colliculus was not higher than of those projecting in the opposite direction. However, fibres projecting into the colliculus were significantly longer. This was also the case when the colliculus was placed next to the pial side of the cortical explant, indicating that outgrowth direction was not related to this observation. We therefore assume a chemotrophic rather than a chemotactic influence of the projection target on cortical axons, which is based on direct contact of axons to the target tissue. It cannot be excluded, however, that the failure to detect chemotactic guidance was caused by the lack of diffusion gradients in our culture system. Innervation of the collicular slice exclusively originated from layer V pyramidal cells, irrespective of the position of the collicular target. Fibre courses suggested that discrimination of the projection target was achieved upon encounter with the collicular surface by direct membrane contact. Inside the collicular tissue, fibre arborizations occurred preferredly in up to three layers perpendicular to the surface. Even after the smallest tracer injections, termination fields were diffusely distributed over the collicular slice. Also, the spatial distribution of retrogradely stained projection neurons did not differ statistically from an equal distribution. Thus, a high degree of convergence and divergence was observed anatomically in the corticotectal projection formed in vitro, corresponding to the immature state in vivo. The functionality of the corticotectal projection was assessed by intracellular recordings from collicular neurons. Electrophysiological properties, such as membrane potential (-68 ± 11 mV), membrane resistance (35.4 ± 27.7 Mω) and the time constant (3.0 ± 2.1 ms) were comparable to reference values, confirming the viability of our culture preparation. The functionality of corticotectal transmission was revealed by intracellularly recorded responses of collicular cells to extracellular cortical stimulation. Most responses were excitatory (90%), although inhibitory responses were also encountered (10%). High-frequency stimulation suggested polysynaptic transmission in all cases tested. Responses from single collicular cells could always be elicited from various cortical stimulation sites, which were usually distributed over the whole cortical explant, confirming the high degree of convergence suggested by the anatomical results. Conduction velocities of corticotectal fibres were estimated to be ∼0.3 m/s, indicating that the fibres of the corticotectal connection in vitro were probably unmyelinated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 4 (1992), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Single neurons in the pretectal nucleus of the optic tract and posterior pretectal nucleus were extracellularly recorded in anaesthetized cats and tested for antidromic activation after electrical stimulation of the ipsilateral dorsal lateral geniculate nucleus. Cells were further characterized by their response latencies to electrical stimulation of the optic nerve head and the optic chiasm, and by responses to various visual stimuli. 46 out of 188 neurons (24%) were antidromically activated from the lateral geniculate nucleus at response latencies of 0.6 - 2.6 ms. They had low spontaneous activities and preferred fast-moving visual stimuli. 29 of the antidromically activated neurons (63%) could be activated from the optic chiasm with response latencies of 4–10 ms. Together with the mean conduction time of 0.8 ms between the optic nerve head and the optic chiasm, this indicates that they receive an indirect retinal input via fast-conducting Y-fibres. Sometimes antidromically activated neurons spontaneously showed irregular burst activity. During unidirectional stimulation with a large moving visual stimulus, burst activity became more regular, and interburst intervals and the duration of single bursts decreased. After the stimulus was stopped, interburst intervals slowly increased until prestimulation activity was restored. The response properties of these neurons could reflect the transfer of saccade-related visual as well as oculomotor signals through the pretectum to the visual thalamus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 12 (2000), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: When reaching for an object we usually look at it before we touch it with the hand. This often unconscious eye movement prior to the arm movement allows guiding of the final part of the hand trajectory by visual feedback. We examined the temporal and spatial coordination of this control system by psychophysical measurements of eye and arm movements of naive human subjects looking or looking and pointing as fast as possible to visual targets in physical and virtual-reality setups. The reaction times of saccades to a step-displaced target were reduced, and the number of corrective saccades decreased, when the subject had to produce a corresponding simultaneous hand movement to the same target. The saccadic reaction time was increased when saccade and hand movement went in opposite directions. In a double-step task the reaction time for the second saccade was longer than for the first. Co-use of the hand leads to an additional increase of saccadic reaction time. Taken together this study shows an improvement in initial saccades if they are accompanied by hand movements to the same target. This effect might ensure that the reach target is foveated early and accurately enough to support the visual feedback control of the hand near the target. Longer reaction times for the second saccade to double-step displaced targets might reflect a saccadic refractory time intensified by simultaneous arm movements. These results are discussed in the light of recent findings from our laboratory on saccade- and reach-related neurons in the superior colliculus of macaque monkeys.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 10 (1998), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In two previous studies, we had demonstrated the influence of eye position on neuronal discharges in the middle temporal area, medial superior temporal area, lateral intraparietal area and area 7A of the awake monkey ( Bremmer et al. 1997a , b). Eye position effects also have been found in visual cortical areas V3A and V6 and even in the premotor cortex and the supplementary eye field. These effects are generally discussed in light of a coordinate transformation of visual signals into a non-retinocentric frame of reference. Neural network studies dealing with the eye position effect succeeded in constructing such non-retinocentric representations by using model neurones whose response characteristics resembled those of ‘real’ neurones. However, to our knowledge, response properties of real neurones never acted as input into these neural networks. In the present study, we thus investigated whether, theoretically, eye position could be estimated from the population discharge of the (previously) recorded neurones and, if so, we intended to develop an encoding algorithm for the position of the eyes in the orbit. The optimal linear estimator proved the capability of the ensemble activity for determining correctly eye position. We then developed the so-called subpopulation encoding of eye position. This algorithm is based on the partition of the ensemble of neurones into two pairs of subpopulations. Eye position is represented by the differences of activity levels within each pair of subpopulations. Considering this result, encoding of the location of an object relative to the head could easily be accomplished by combining eye position information with the intrinsic knowledge about the retinal location of a visual stimulus. Taken together, these results show that throughout the monkey’s visual cortical system information is available which can be used in a fairly simple manner in order to generate a non-retinocentric representation of visual information.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 5 (1993), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Retinal projections to the pretectal nuclei, accessory optic system and superior colliculus in pigmented and albino ferrets were studied using anterograde tracing techniques. Both Nissl- and myelin-stained material was used to identify the pretectal nuclei, nuclei of the accessory optic system and the layers of the superior colliculus. Following monocular injection of either horseradish peroxidase or rhodamine-B-isothiocyanate, four pretectal nuclei, including the nucleus of the optic tract, posterior pretectal nucleus, anterior pretectal nucleus and the olivary pretectal nucleus, could be identified to receive direct retinal input in both pigmented and albino strains. In the accessory optic system, retinal terminals were observed in the dorsal, lateral and medial terminal nuclei as well as in the interstitial nucleus of the superior fasciculus, posterior fibres. The retinal projection to the superior colliculus was found to innervate the three superficial layers. The retinal projections to the pretectal nuclei and nuclei of the accessory optic system in the pigmented animals were bilateral, although the label was most dense contralateral to the injected eye. Ipsilateral retinal projections to the pretectal nuclei and nuclei of the accessory optic system appeared to be absent in albino ferrets, i.e. they were invisible with our methods. In both pigmented and albino ferrets retinal terminals in the contralateral superior colliculus densely innervated the three superficial layers. In both strains the ipsilateral projection appeared as clusters which were absent in rostral and caudal poles. In pigmented animals the ipsilateral projection was much denser and more extensive than in albinos. Following injection of retrograde tracers into the brainstem at the level of the dorsal cap of the inferior olive, retrogradely labelled neurons in the pretectum were found in the ipsilateral nucleus of the optic tract. Their somata overlapped mainly with scattered retinal terminals close to the pretectal surface and rarely or not all with the deeper prominent terminal clusters. In the accessory optic system, inferior olive projecting neurons were observed in all four ipsilateral nuclei and fully coincided with the retino-recipient zones. In the superior colliculus, retrogradely labelled neurons were found contralateral to the injection site in the deep layers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...