Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 12 (1978), S. 1819-1839 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The present paper describes a hybrid stress finite element formulation for geometrically non-linear analysis of thin shell structures. The element properties are derived from an incremental form of Hellinger-Reissner's variational principle in which all quantities are referred to the current configuration of the shell. From this multi-field variational principle, a hybrid stress finite element model is derived using standard matrix notation. Very simple flat triangular and quadrilateral elements are employed in the present study. The resulting non-linear equations are solved by applying the load in finite increments and restoring equilibrium by Newton-Raphson iteratioin. Numerical examples presented in the paper include complete snap-through buckling of cylindrical and spherical shells. It turns out that the present procedure is computationally efficient and accurate for non-linear shell problems of high complexity.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...