Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 24 (2000), S. 275-276 
    ISSN: 1476-5535
    Keywords: Keywords: hydroxy unsaturated fatty acids; antifungal activity; plant pathogenic fungi; plant disease control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Hydroxy fatty acids are plant self-defense substances (Masui et al, Phytochemistry1989). Three types of hydroxy fatty acids: 10-hydroxystearic acid (HSA), 7S,10S-dihydroxy-8(E)-octadecenoic acid (DOD), and 12,13,17-trihydroxy-9(Z)-octadecenoic acid (THOA) were tested against the following plant pathogenic fungi: Erysiphe graminis f sp tritici (common disease name, wheat powdery mildew); Puccinia recondita (wheat leaf rust); Pseudocercosporella herpotrichoides (wheat foot rot); Septoria nodorum (wheat glume blotch); Pyricularia grisea (rice blast); Rhizoctonia solani (rice sheath blight); Phytophthora infestans (potato late blight); and Botrytis cinerea (cucumber botrytis). At a concentration of 200 ppm, both HSA and DOD showed no fungal disease control activity. However, THOA at the same concentration showed weak activity and provided disease control (percent) of the following plant pathogenic fungi: Erysiphe graminis 77%; Puccinia recondita 86%; Phytophthora infestans 56%; and Botrytis cinerea 63%. The position of the hydroxy groups on the fatty acids seems to play an important role in activity against specific fungi. Journal of Industrial Microbiology & Biotechnology (2000) 24, 275–276.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 25 (2000), S. 109-115 
    ISSN: 1476-5535
    Keywords: Keywords: bioconversion; trihydroxy octadecenoic acid; linoleic acid; Pseudomonas aeruginosa PR3
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Trihydroxy unsaturated fatty acids with 18 carbons have been reported as plant self-defense substances. Their production in nature is rare and is found mainly in plant systems. Previously, we reported that a new bacterial isolate, Pseudomonas aeruginosa PR3, converted oleic acid and ricinoleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid and 7,10,12-trihydroxy-8(E)-octadecenoic acid, respectively. Here we report that strain PR3 converted linoleic acid to two compounds: 9,10,13-trihydroxy-11(E)-octadecenoic acid (9,10,13-THOD) and 9,12,13-trihydroxy-10(E)-octadecenoic acid (9,12,13-THOD). Stereochemical analyses showed the presence of 16 different diastereomers — the maximum number possible. The optimum reaction temperature and pH for THOD production were 30°C and 7.0, respectively. The optimum linoleic acid concentration was 10 mg/ml. The most effective single carbon and nitrogen sources were glucose and sodium glutamate, respectively. However, when a mixture of yeast extract (0.05%), (NH4)2HPO4 (0.2%), and NH4NO3 (0.1%) was used as the nitrogen source, THOD production was higher by 8.3% than when sodium glutamate was the nitrogen source. Maximum production of total THOD with 44% conversion of substrate was achieved at 72 h of incubation, after which THOD production plateaued up to 240 h. THOD production and cell growth increased in parallel with glucose concentration up to 0.3%, after which cell growth reached its maximum and THOD production did not increase. These results suggested that THODs were not metabolized by strain PR3. This is the first report of microbial production of 9,10,13- and 9,12,13-THOD from linoleic acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 109–115.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-5535
    Keywords: Keywords: biotransformation; dihydroxy octadecenoic acid; trihydroxy octadecenoic acid; Pseudomonas aeruginosa; ricinoleic acid; hydroxylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A bacterial isolate, Pseudomonas aeruginosa (PR3), has been reported to produce a new compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD), from ricinoleic acid (Kuo TM, LK Manthey and CT Hou. 1998. J Am Oil Chem Soc 75: 875–879). The reaction is unique in that it involves an introduction of two additional hydroxyl groups at carbon 7 and 10 and a rearrangement of the double bond from carbon 9–10 (cis) to 8–9 (trans). In an effort to elucidate the metabolic pathway involved in the formation of TOD from ricinoleic acid by PR3, we have isolated another compound from the reaction mixture using HPLC. The structure of the new compound was determined to be 10, 12-dihydroxy-8(E)-octadecenoic acid (DHOD) by GC/MS, FTIR, and NMR. The structural similarity between DHOD and TOD and the results from the time course study of the above two compounds strongly suggested that DHOD was an intermediate in the bioconversion of ricinoleic acid to TOD by PR3. The optimum pH and temperature for the production of DHOD from ricinoleic acid by PR3 was 6.5 and 25°C, respectively. This is the first report on the production of 10,12-dihydroxy-8(E)-octadecenoic acid from ricinoleic acid by PR3. Journal of Industrial Microbiology & Biotechnology (2000) 24, 167–172.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 32 (1989), S. 299-304 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Resting cell suspensions of seven Nocardia species catalyzed the production of 10-hydroxystearic acid from oleic acid. Nocardia cholesterolicum NRRL 5767 gave a good yield with optimum conditions at pH 6.5 and 40°C. Yields exceeding 90% can be obtained within 6 h with 0.1 g cells (dry weight) and 178 mg oleic acid in 10 ml of 0.05 M sodium phosphate buffer (pH 6.5). In addition, minor amounts of 10-ketostearic acid were formed as a by-product. The reaction proceeded via hydration of the double bond as shown by labeling experiments with deuterium oxide and 18O-labeled water. The system was specific for fatty acids with cis unsaturation at the 9 position.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 41 (1994), S. 178-182 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Previously, we reported that eight glucose-grown microbial cultures out of 1229 screened oxidize the alkyl side-chain of 2-phenylpropane (cumene) stereospecifically. Now, we have adapted these cultures to grow on n-octane and found that their cumene oxidation activities increased more than 30 times. We also found an additional 11 cultures (ten bacteria, one actinomycete) that oxidized cumene when grown on octane but not on glucose. In general, octane-grown cells were more active in cumene oxidation than glucose-grown cells. Rhodococcus rhodochrous NRRL B-2153 showed the best conversion yield (2-phenyl-1-propanol plus 2-phenyl-1-propionic acid was 5.5%) at 25°C, pH 8.0, 250 rpm, and 12 h of reaction. Structures of the reaction products were confirmed by gas chromatography (GC)/mass spectrometry and GC/infrared analyses. Products contained 84% ee (enantiomeric excess) of the R(−) isomer, as analyzed with a GC cyclodextrin chiral column. Strain B-2153 oxidized alkylbenzenes in the following order of reaction rate: ethylbenzene 〉amylbenzene 〉 butylbenzene 〉 cumene 〉 propylbenzene 〉 sec-butylbenzene. tert-Butylbenzene was not oxidized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Obligate methylotroph ; Heme-containing ; Aldehyde dehydrogenase ; Characterization ; Methylomonas methylovora
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Procedures for the purification of an aldehyde dehydrogenase from extracts of the obligate methylotroph, Methylomonas methylovora are described. The purified enzyme is homogeneous as judged from polyacrylamide gel electrophoresis. In the presence of an artificial electron acceptor (phenazine methosulfate), the purified enzyme catalyzes the oxidation of straight chain aldehydes (C1-C10 tested), aromatic aldehydes (benzaldehyde, salicylaldehyde), glyoxylate, and glyceraldehyde. Biological electron acceptors such as NAD+, NADP+, FAD, FMN, pyridoxal phosphate, and cytochrome c cannot act as electron carriers. The activity of the enzyme is inhibited by sulfhydryl agents [p-chloromercuribenzoate, N-ethylmaleimide and 5,5-dithiobis (2-nitrobenzoic acid)], cuprous chloride, and ferrour nitrate. The molecular weight of the enzyme as estimated by gel filtration is approximately 45000 and the subunit size determined by sodium dodecyl sulfate-gel electrophoresis is approximately 23000. The purified enzyme is light brown and has an absorption peak at 410 nm. Reduction of enzyme with sodium dithionite or aldehyde substrate resulted in the appearance of peaks at 523 nm and 552 nm. These results suggest that the enzyme is a hemoprotein. There was no evidence that flavins were present as prosthetic group. The amino acid composition of the enzyme is also presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 16 (1996), S. 129-133 
    ISSN: 1476-5535
    Keywords: extracellular polysaccharide ; Agrobacterium ; viscous polysaccharide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A bacterium isolated from soil and identified asAgrobacterium sp produced a water-soluble extracellular polysaccharide capable of producing highly viscous solutions. Gas chromatographic analysis revealed a sugar composition of glucose, galactose and mannose in the molar ratio of 7.5∶2.4∶1, together with 3.7% (w/w) pyruvic acid. Methylation analyses showed the presence of (1→3)-, (1→4)- and (1→6)-linked glucose, (1→3)- and (1→4, 1→6)-linked galactose and a small portion of (1→3)-linked mannose residues. Succinic acid was not present. The molecular weight of the polysaccharide was estimated by light scattering to be 2×106 Da. The viscosity of solutions containing the polysaccharide remained constant from pH 3 to 11, and decreased by 50% when heated from 5 to 55°C. Maximum yield of the polysaccharide, 20 g L−1, was reached in 48 h at 30°C incubation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 19 (1997), S. 34-38 
    ISSN: 1476-5535
    Keywords: Keywords: unsaturated fatty acids; trihydroxy fatty acid; bioconversion; Clavibacter; linoleic acid; 12,13,17-trihydroxy-9(Z)-octadecenoic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A bacterium isolated from a dry soil sample collected from McCalla, AL, USA, converted linoleic acid to a novel compound, 12,13,17-trihydroxy-9 (Z)-octadecenoic acid (THOA). The organism is a Gram-positive, non-motile rod (0.5 μ m × 2 μ m). It was identified as a species of Clavibacter ALA2. The product was purified by high pressure liquid chromatography, and its structure was determined by 1H and 13C nuclear magnetic resonance and Fourier transform infrared spectroscopies, and by mass spectrometer. Maximum production of THOA with 25% conversion of the substrate was reached after 5–6 days of reaction. THOA was not further metabolized by strain ALA2. This is the first report of a 12,13,17-trihydroxy unsaturated fatty acid and its production by microbial transformation. Some dihydroxy intermediates were also detected. THOA has a structure similar to those of known plant self-defense substances.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 1 (1986), S. 137-137 
    ISSN: 1476-5535
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-0972
    Keywords: Dihydroxy fatty acid ; phenazine 1-carboxylic acid ; Pseudomonas aeruginosa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A new compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD), produced from oleic acid by a new bacterial isolate PR3, was discovered in 1991. We have now identified isolate PR3 as a strain of Pseudomonas aeruginosa by DNA reassociation studies. Strain PR3 also produced a crystalline yellowish compound the structure of which, as determined by GC/MS and NMR, is phenazine 1-carboxylic acid (PCA). In cultures of PR3, high PCA production was associated with low DOD accumulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...