Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The interaction of predation pressure with lethal and sublethal effects of temefos (Abate®) an organophosphorous insecticide, were studied in field populations of Uca pugnax (S.I. Smith). Changes in fiddler crab population densities were followed in open-marsh temefos-treated and untreated test plots and in treated and untreated plots which were caged over to reduce predation by marsh birds. Temefos significantly reduced the population density of U. pugnax in the open test plots but not in the caged plots. These results indicate that temefos has a primarily sublethal effect on the crabs, the effect becoming lethal only after interaction with avian predation. Evidence from the presence of a time-lag effect in the population decrease, from a calculated predation index, and from laboratory studies reported elsewhere of behavioral alteration by temefos also supports the conclusion that temefos primarily impairs the escape response of U. pugnax: this leads to increased predation and subsequently to a decreased fiddler crab population. Such studies of sublethal effects of toxicants and field studies of interactions of lethal and sublethal effects of such compounds with natural population dynamics of affected species are necessary to evaluate possible effects of toxicants on populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 90 (1992), S. 316-322 
    ISSN: 1432-1939
    Keywords: Aerenchyma ; Gas transport ; Salt marsh ; Spartina alterniflora
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Lacunal allocation as the fraction of the total cross sectional area of leaves, stem bases, rhizomes, and roots was determined in both tall and short growth forms of Spartina alterniflora collected from natural monospecific stands. The results indicate that in both growth forms lacunal allocation is greater in stem bases and rhizomes than in leaves and roots and that tall form plants allocate more of their stem and rhizome to lacunae than short form plants. Measurements made in natural stands of Spartina alterniflora suggest that total lacunal area of the stem base increases with increasing stem diameter and that stem diameter increases with increasing plant height and above-ground biomass. However, the fraction of cross section allocated to lacunae was relatively constant and increased only with the formation of a central lacuna. Experimental manipulations of surface and subsurface water exchange were carried out to test the influence of flooding regime on aerenchyma formation. No significant differences in lacunal allocation were detected between plants grown in flooded (reduced) and drained (oxidized) sediments in either laboratory or field experiments. While aerenchyma formation in Spartina alterniflora may be an adaptation to soil waterlogging/anoxia, our results suggest that lacunal formation is maximized as a normal part of development with allocation constrained structurally by the size of plants in highly organic New England and Mid-Atlantic marshes. The cross sectional area of aerenchyma for gas transport was found to be related to the growth of Spartina alterniflora with stands of short form Spartina alterniflora exhibiting a lower specific gas transport capacity (lacunal area per unit below ground biomass) than tall form plants despite having a similar below-ground biomass supported by a 10 fold higher culm density. The increased specific gas transport capacity in tall vs. short plants may provide a new mechanism to explain the better aeration, higher nutrient uptake rates and lower frequency of anaerobic respiration in roots of tall vs. short Spartina alterniflora.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 97 (1994), S. 431-438 
    ISSN: 1432-1939
    Keywords: Gas transport ; Salt marsh ; Spartina alterniflora ; Rhizosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spartina alterniflora has been reported to lose significant amounts of oxygen to its rhizosphere with potentially important effects on salt-marsh biogeochemical cycling and plant productivity. The potential significance of this oxidative pathway was evaluated using laboratory split-chamber experiments to quantify oxygen loss from intact root systems under a wide variety of pre-treatment and incubation conditions including antibiotics to inhibit microbial respiration. The aerenchyma system of S. alterniflora was found to transport O2, N2, Ar, and CH4 from above-ground sources to its below-ground roots and rhizomes. While non-respiratory gases were observed to move from the lacunae to water bathing the root systems, net O2 loss did not occur; instead oxygen present outside of the roots/rhizomes was consumed. Net oxygen loss was found when resistance to gas transport was reduced in the lacunae-rhizosphere pathway by placing the root systems in a gas phase and when plant respiration was significantly reduced. Root system respiration appeared to be the major variable in the plant oxygen balance. When root and rhizome respiration was inhibited using poisons or lowered by cooling, the oxygen deficit was greatly reduced and oxygen loss was indicated. The effect of seasonal temperature changes on root system “oxygen deficit” presents a possible explanation as to why Spartina produces root systems with respiration rates that cannot be supported by gas transport. Overall, while oxygen loss from individual plant roots is likely, integrating measured root system oxygen loss with geochemical data indicates that the mass amount of oxygen lost from S. alterniflora root systems is small compared to the total oxygen balance of vegetated salt marsh sediments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 123 (1995), S. 379-391 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Relationships between flooding frequency, flooding duration, litter moisture levels, and litter decay rates were investigated across the natural hydrologic gradient common to intertidal salt marshes. The effects on litter decay of natural and experimental alterations of litter moisture content were assessed in both field litterbag experiments (conducted in a southern New Jersey salt marsh from 1989 to 1990) and laboratory incubations (1990). Overall, tidally mediated litter moisture content was the dominant factor controlling litter decay throughout the vegetated marsh. Rates of carbon loss were most closely related to litter moisture levels (r=0.84), which were directly related to flooding frequency (r=0.66) and duration (r=0.63). Litter moisture levels were related to elevation within the tidal range due to increasing surface levation from creekbank to high marsh (ca. 54 cm) and height of litter above the sediment surface. Carbon losses from litter of short and tall form Spartina alterniflora Loisel. and S. patens (Aiton) Muhl. along the marsh elevation gradient indicate that while some of the variations in decay rates may be due to litter type, litter moisture accounted for most of the observed variation between marsh zones and within each litter type. Mousture levels are also affected by the water retention capacity of each litter type, which may also secondarily influence decay rates. Short-term incubations of litter indicated that CO2 evolution was positively related to moisture content with negligible respiration at moisture levels below 15% (fresh mass), increasing to a maximum between 65 and 75% depending upon litter type. Since most Spartina spp. litter remains above the marsh surface where it maintains a lower moisture content than surface litter, the use of surface litterbags may overestimate rates of carbon loss in some systems. In addition, since changes in elevation of only a few centimeters had significant effects on both litter moisture levels and decay rates, slight changes in tidal regime may have important consequences for organic matter cycling in salt marshes by affecting litter decomposition processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...