Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 49 (1987), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The endogenous phosphorylation of serotonin binding protein (SBP), a soluble protein found in central and peripheral serotonergic neurons, inhibits the binding of 5-hydroxytryptamine (5-HT, serotonin). A protein kinase activity that copurifies with SBP (SBP-kinase) was partially characterized and compared with calcium/calmodulin-dependent protein kinase II (CAM-PK II). SBP itself is not the enzyme since heating destroyed the protein kinase activity without affecting the capacity of the protein to bind [3H]5-HT. SBP-kinase and CAM-PK II kinase shared the following characteristics: (1) size of the subunits; (2) autophosphorylation in a Ca2+-dependent manner; and (3) affinity for Ca2+. In addition, both forms of protein kinase phosphorylated microtubule-associated proteins well and did not phosphorylate myosin, phosphorylase b., and casein. Phorbol esters or diacylglycerol had no effect on either of the protein kinases. However, substantial differences between SBP-kinase and CAM-PK II were observed: (1) CAM enhanced CAM-PK II activity, but had no effect on SBP-kinase; (2) synapsin I was an excellent substrate for CAM-PK II, but not for SBP-kinase; (3) 5-HT inhibited both the autophosphorylation of SBP-kinase and the phosphorylation of SBP, but had no effect on CAM-PK II. These data indicate that SBP-kinase is different from CAM-PK II. Phosphopeptide maps of SBP and SBP-kinase generated by digestion with S. aureus V8 protease are consistent with the conclusion that these proteins are distinct molecular entities. It is suggested that phosphorylation of SBP may regulate the transport of 5-HT within neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 63 (1994), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Serotonin binding protein (SBP) is present in all neurectodermally derived cells that store serotonin (5-HT). Three forms of SBP have been detected (68, 56, and 45 kDa), and antibodies to SBP that interfere with the binding of 5-HT react with each of these proteins. The current experiments test two hypotheses: (a) that the 56- and 45-kDa forms of SBP are produced by posttranslational cleavage of a 68-kDa precursor molecule; and (b) that 45-kDa SBP is a constituent of serotonergic secretory vesicles. Pulse-chase experiments were carried out using medullary thyroid carcinoma cells as a model. These neurectodermally derived cells produce 5-HT and all three forms of SBP. Following pulse labeling for 20 min with l-[35S]methionine, the cells were incubated in the presence of an excess of unlabeled l-methionine for 0, 30, 60, or 90 min at 37°C. Alternatively, the chase was performed under conditions (20°C, inhibition of ATP generation) that delay or stop transport of newly synthesized proteins from the rough endoplasmic reticulum through the Golgi apparatus. Following incubation, the cells were washed and solubilized, and SBP was immunoprecipitated. Radioactive proteins in the immunoprecipitate were electrophoretically resolved and quantified. Immediately after the pulse, each of the three forms of SBP was found to be labeled with 35S. The relative proportions of 35S-labeled 68-, 56-, and 45-kDa SBP remained the same at each interval of chase. These proportions were not changed when the chase was carried out at 20°C or under conditions that blocked the biosynthesis of ATP. These observations suggest that each form of SBP is a primary product of translation, that the smaller forms of SBP are not produced by cleavage from a larger molecule, and that the size of the primary products of translation is not altered by passage to the Golgi apparatus or a post-Golgi compartment. When secretion was induced, 45-kDa SBP, but not 56- or 68-kDa SBP, was released to the medium. When antibodies to 45-kDa SBP were added to the medium at the time secretion was induced, antibody binding sites appeared as patches on the cell surfaces. Because of these sites, cells were lysed when they were stimulated to secrete in the presence of antibodies to 45-kDa SBP and guinea pig complement. Antibody binding sites disappeared from cell surfaces after 20 min, at which time antibodies to SBP were found inside the cells. It is suggested that 45-kDa SBP is packaged with 5-HT in secretory vesicles. Some 45-kDa SBP is lost during secretion as a result of exocytosis; however, a fraction of the 45-kDa SBP remains bound to the luminal surface of the membrane of secretory vesicles. This protein is exposed to the ambient medium as a consequence of exocytosis, but is reinternalized when the vesicular membrane is recaptured during vesicle recycling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 57 (1991), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Anti-idiotypic antibodies were generated by immunizing rabbits with affinity-purified antibodies to serotonin (5-hydroxytryptamine; 5-HT). Anti-5-HT activity was removed from the resulting antisera by chromatography through a 5-HT affinity column. The anti-idiotypic antibodies were demonstrated by enzyme-linked immunosorbent assay to bind to affinity-purified whole anti-5-HT antibodies and their Fab fragments. Anti-idiotypic antibodies, purified by affinity chromatography on columns to which antibodies to 5-HT were coupled, competed with 5-HT (covalently bound to protein) for the binding sites on anti-5-HT antibodies and serotonin binding protein. The anti-idiotypic antibodies antagonized the binding of [3H]5-HT to membranes isolated from the cerebral cortex, striatum, and raphe area more than to membranes from hippocampus or cerebellum. The anti- idiotypic antibodies also blocked the binding of the 5-HT1B- selective ligand (-)-[125I]iodocyanopindolol (in the presence of 30 μM isoproterenol) to cortical membranes. In contrast, anti-idiotypic antibodies failed to inhibit binding of the 5- HT1A-selective ligand 8-hydroxy-2-(di-n)-[3H]propylamino)- tetralin ([3H]8-OH-DPAT) to raphe area membranes or hippocampal membranes. These observations suggested that the anti-idiotypic antibodies may recognize some 5-HT receptor subtypes but not others. This hypothesis was tested by ascertaining the ability of anti-idiotypic antibodies to immunostain cells transfected in vitro with cDNA encoding the 5- HT1C or 5-HT2 receptor or with a genomic clone encoding the 5-HT1A receptor. Punctate sites of immunofluorescence were found on the surfaces of fibroblasts that expressed 5- HT1C and 5-HT2 receptors, but not on the surfaces of HeLa cells that expressed 5-HT1A receptors. Immunostaining of cells by the anti-idiotypic antibodies was inhibited by appropriate pharmacological agents: immunostaining of cells expressing 5-HT1C receptors was blocked by mesulergine (but not ketanserin, 8-OH-DPAT. or spiperone), whereas that of cells expressing 5-HT2 receptors was blocked by ketanserin or spiperone (but not mesulergine or 8-OH-DPAT). The anti- idiotypic antibodies failed to inhibit the uptake of [3H]5-HT by serotonergic neurons. It is concluded that the anti-idiotypic antibodies generated with anti-5-HT serum recognize the 5- HT1B, 5-HTlC, and 5-HT2 receptor subtypes; however, neither 5-HT1A receptors nor 5-HT uptake sites appear to react with these antibodies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Positron emission tomography studies in major depression show reduced serotonin (5-HT)1A receptor antagonist-binding potentials in many brain regions including occipital cortex. The functional meaning of this observation in terms of signal transduction is unknown. We used postmortem brain samples from depressed suicide victims to examine the downstream effectors of 5-HT1A receptor activation. The diagnosis was established by means of psychological autopsy using Diagnostic and Statistical Manual of Mental Disorders (DSM) III-R criteria. Measurements of [35S]GTPγS binding to Gαi/o in the occipital cortex of suicide victims and matched controls revealed a blunted response in suicide subjects and a decrease in the coupling of 5-HT1A receptor to adenylyl cyclase. No significant group differences were detected in the expression levels of Gαi/o, Gαq/11 or Gαs proteins, or in the activity of cAMP-dependent protein kinase A. Studies of a parallel transduction pathway downstream from 5-HT1A receptor activation demonstrated a decrease in the activity of phosphatidylinositol 3-kinase and its downstream effector Akt, as well as an increase in PTEN (phosphatase and tensin homolog deleted on chromosome 10), the phosphatase that hydrolyzes phosphatidylinositol 3,4,5-triphosphate. Finally, the activation of extracellular signal-regulated kinases 1 and 2 was attenuated in suicide victims. These data suggest that the alterations in agonist-stimulated 5-HT1A receptor activation in depressed suicide victims are also manifest downstream from the associated G protein, affecting the activity of second messengers in two 5-HT1A receptor transduction pathways that may have implications for cell survival.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To investigate the functional consequences of cross-talk between multiple effectors of serotonin (5-HT) 1A receptor, we employed transfected Chinese hamster ovary cells. Activation of 5-HT1A receptor stimulated extracellular signal-regulated kinase (ERK)1/2, Akt and nuclear transcription factor-κB (NF-κB). Stimulation of cells with 5-HT1A receptor agonist induced a rapid but transient ERK1/2 phosphorylation followed by increased phosphorylation of Akt. Elevated Akt activity in turn suppressed Raf activity and induced a decline in ERK activation. The activation of ERK and Akt downstream of 5-HT1A receptor was sensitive to inhibitors of Ras, Raf and phosphatidylinositol 3-kinase (PI3K). Stimulation of 5-HT1A receptor also resulted in activation of NF-κB through a decrease in inhibitor of nuclear transcription factor-κB. In support of the importance of 5-HT1A receptor signaling for cell survival, inhibition of NF-κB facilitated caspase 3 activation and cleavage of poly (ADP-ribose) polymerase, while treatment of cells with agonist inhibited caspase 3, DNA fragmentation and cell death. Both agonist-dependent NF-κB activation and cell survival were decreased by Akt Inhibitor II or by overexpression of dominant-negative Akt. These findings suggest a role for 5-HT1A receptor signaling in the Ras/Raf-dependent regulation of multiple intracellular signaling pathways that include ERK and PI3K/Akt. Of these, only PI3K/Akt and NF-κB activation were required for 5-HT1A receptor-dependent cell survival, implying that the relative distribution of signals between competing transduction pathways determines the functional outcome of 5-HT1A receptor activation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Mice lacking dopamine D2 receptors exhibit a significantly decreased agonist-promoted forebrain neocortical D1 receptor activation that occurs without changes in D1 receptor expression levels. This raises the possibility that, in brains of D2 mutants, a substantial portion of D1 receptors are uncoupled from their G protein, a phenomenon known as receptor desensitization. To test this, we examined D1-agonist-stimulated [35S]GTPγS binding (in the presence and absence of protein phosphatase inhibitors) and cAMP production (in the presence and absence of pertussis toxin) in forebrain neocortical tissues of wild-type mice and D2-receptor mutants. These studies revealed a decreased agonist-stimulated G-protein activation in D2 mutants. Moreover, whereas protein phosphatase 1/2A (PP1/2A) and 2B (PP2B) inhibitors decrease [35S]GTPγS binding in a concentration-dependent manner in wild type, they have either no (PP2B) or only partial (PP1/2A) effects in D2 mutants. Furthermore, for D2 mutants, immunoprecipitation experiments revealed increased basal andD1-agonist-stimulated phosphorylation of D1-receptor proteins at serine residues. Finally, D1 immunoprecipitates of both wild type and D2 mutants also contain protein kinase A (PKA) and PP2B immunoreactivities. In D2 mutants, however, the catalytic activity of the immunoprecipitated PP2B is abolished. These data indicate that neocortical D1 receptors are physically linked to PKA and PP2B and that the increased phosphorylation of D1 receptors in brains of D2 mutants is due to defective dephosphorylation of the receptor rather than increasedkinase-mediated phosphorylation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...