Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 22 (1969), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Measurements were made of phosphorus uptake by intact tomato plants from solutions labelled with 32P. The plants were exposed to low water potentials by the addition of mannitol to culture solutions. The amounts of labelled phosphorus in the roots and in the shoots wore determined after a one- or two-hour period. Down to -5.4 atmospheres, the amount of labelled phosphorus in the roots remained constant, hut the amount transported to the shoots was reduced. However, potentials of -10.4 atm reduced the amount of labelled phosphorus in both the root and the shoot. Similar results were obtained when plants were tested immediately after water stress was imposed and when tested after water potentials had been lowered gradually.Plants were treated for one hour at low water potentials and then returned to control solutions (−0.4 atm). For a considerable time, these plants had a much lower phosphorus uptake than plants which had remained continuously at −0.4 atm. These data support the idea that a disturbance in mineral nutrition is partly responsible for reduced growth in plants which experience a moderate water deficit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 80 (1968), S. 129-141 
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In excised roots of barley and tomato plants, lowering the water potential of nutrient solutions to-10.4 and-20.4 atm decreased the uptake of bromide and phosphorus while increasing the loss of these ions to the external solutions. Lowering the water potential greatly increased the rate of loss of potassium and bromide from the cytoplasm, but the increases in loss from the vacuoles were much smaller. The results suggest that the mechanisms of ion uptake are not affected by low water potential and that the decrease in ion accumulation is caused by the increased leakage from the cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...