Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] We efficiently transformed the commercial cultivars of potato (Solanum tuberosum) Bintje, Desiree and Escort after optimizing the conditions for regeneration from potato tuber discs. For transformation, tuber discs were cocultivated with Agrobacterium tumefaciens using a disarmed binary vector ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: potato ; potato leafroll virus ; PLRV ; virus resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transgenic potato plants, cultivar Désirée, were produced that contained the coat protein gene of potato leafroll luteovirus (PLRV). The transformed potato plants expressed the PLRV coat protein (CP) RNA sequences but accumulation of coat protein in transgenic tissues could not be detected. Upon inoculation with PLRV, the PLRV CP RNA expressing potato plants showed a reduced rate of virus multiplication.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: potato ; potato virus X ; PVX ; PVY ; PLRV ; virus resistance ; field trials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plant viral genomes are relatively small and in the past decade many have been characterized at the molecular level. This has prompted research into the development of virus resistance based on interference with the viral multiplication cycle by the introduction of viral sequences into the plant genome. Several strategies have been tested. The most successful one so far involves the constitutive expression of the coat protein gene of the virus against which resistance is desired. In this review we describe progress made in engineering virus resistance into potato, an important agricultural crop. To this end the molecular structure of the potato viruses X and Y and leafroll is discussed as well as the introduction of resistance against potato virus X into potato. In addition, we address the question of preservation of cultivar-specific characteristics, an important prerequisite for commercial application. Finally, recent investigations for alternative forms of virus resistance are described against the background of the results of coat protein-mediated protection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 63 (1992), S. 187-197 
    ISSN: 1573-5060
    Keywords: potato breeding ; coat protein mediated protection ; virus resistance ; PVX ; Solanum tuberosum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Traditional potato breeding is a laborious process in which, by intercrossing, valuable traits from different parental clones are combined in a progeny genotype. Depending on the availability of genes, molecular techniques can be used to add specific genes to existing cultivars that, although otherwise satisfactory, lack a lew commercially important traits. For virus resistance the gene for the coat protein of a given virus transplanted into the genome of the plant renders the plant resistant to that virus. In conferring such resistance to potato varieties it proved to be possible to preserve their intrinsic properties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 98 (1992), S. 29-36 
    ISSN: 1573-8469
    Keywords: genetic engineering ; resistance genes ; transgenic virus resistance ; viral genes ; PVX ; PVY ; PLRV
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract To engineer resistance against potato virus X (PVX), the viral coat protein (CP) gene has been introduced into two potato cultivars. Stable expression of the gene in transgenic clones throughout the growing season has been obtained and resulted in considerably increased virus resistance. With varying frequencies depending on the original cultivar used, true-to-type PVX resistant transgenic clones have been obtained. Since deviant light sprout characteristics were invariably associated with aberrations in plant phenotype, they can be used in procedures to early screen for deviations. Furthermore, it has been possible to unequivocally discriminate between the original untransformed and independent transgenic cultivars. Although no relation has been found between the presence, if any, of the CP of potato virus Y (PVY) or potato leafroll virus (PLRV) in CP gene transgenic potato, appreciable levels of resistance to these viruses has been obtained. This suggests that the mechanism by which a viral CP gene in the potato genome evokes resistance, differs amongst various viruses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...