Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 3 (1991), S. 161-164 
    ISSN: 0899-0042
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0899-0042
    Keywords: high-performance liquid chromatography ; chiral stationary-phase ; flavin-containing monooxygenase ; N-ethyl-N-methylaniline N-oxide, Chiralcel OD ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The prochiral tertiary amine N-ethyl-N-methylaniline (EMA) is known to be metabolically N-oxygenated in vitro with microsomal preparations. This biotransformation is thought to be mediated predominantly by the flavin-containing monooxygenase (FMO) enzyme system. Microsomal N-oxygenation of EMA is known to be stereoselective and varies between species. In order to further characterise this metabolic transformation, we have examined the in vitro metabolism of EMA using purified porcine hepatic FMO. Following incubation of EMA with purified FMO, EMA N-oxide, the only metabolite detected, was found to be produced stereoselectively [ratio (-)-(S):(+)-(R), ca. 4:1]. The enantiomeric ratio of the N-oxide product did not change markedly with respect to time, enzyme or substrate concentration. Determination of the kinetics of formation of the N-oxide indicated a single affinity for the prochiral substrate with differential rates of formation of the enantiomers. The extent of EMA N-oxide formation was shown to be affected by activators and inhibitors of FMO and pH, but its stereoselectively was unaltered. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0899-0042
    Keywords: N-ethyl-N-methylaniline N-oxide ; chiral nitrogen centre ; flavin-containing monooxygenase ; stereoselective metabolic N-oxidation ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The prochiral tertiary amine N-ethyl-N-methylaniline (EMA) is known to be stereoselectively N-oxygenated in the presence of hepatic microsomal preparations. This biotransformation is thought to be mediated predominantly by the flavin-containing monooxygenase (FMO) enzyme system. In order to characterise this reaction further, the in vitro metabolism of EMA in the presence of hepatic microsomal preparations derived from a number of laboratory species has been examined. EMA N-oxide formation was stereoselective with respect to the (-)-S-enantiomer in the presence of microsomal preparations from all species examined, with the degree of selectivity decreasing in the order of rabbit 〉 rat ∼ LACA mouse ∼ DBA/2Ha mouse 〉 guinea-pig 〉 dog. The enantiomeric composition of the metabolically derived EMA N-oxide appeared to be determined solely by the differential rate of formation of the two enantiomers as opposed to any differences in affinities for the substrate in its pro-R and pro-S conformations. The use of enzyme inhibitors, activators and inducers indicated that EMA N-oxide formation was predominantly mediated by FMO in the presence of rabbit hepatic microsomes and that these agents did not generally affect the stereochemical outcome of the biotransformation. © 1996 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0899-0042
    Keywords: pargyline N-oxide ; chiral nitrogen centre ; flavin-containing monooxygenase ; chiral stationary phase ; high-performance liquid chromatography ; Chiralcel OD ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The monoamine oxidase inhibitor pargyline (N-benzyl-N-methyl-2-propynylamine) is known to undergo extensive in vitro microsomal N-oxidation, thought to be mediated predominantly by the flavin-containing monooxygenase (FMO) enzyme system. Formation of the pargyline N-oxide (PNO) metabolite creates a chiral nitrogen centre and thus asymmetric oxidation is possible. This study describes a reverse-phase high-performance liquid chromatographic (HPLC) method for the quantitation of PNO and a chiral-phase HPLC method for the determination of the enantiomeric ratio of PNO. In vitro microsomal N-oxidation of pargyline was found to be highly steroselective in a number of species, with the (+)-enantiomer being formed preferentially. This metabolic transformation was stereospecific when purified porcine hepatic FMO was used as the enzyme source. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0899-0042
    Keywords: stereoselective synthesis ; carboxyibuprofen diastereoisomers ; circular dichroism ; chiral LC separation ; ibuprofen ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The chromatographic resolution of the four stereoisomers of carboxyibuprofen, a major metabolite of ibuprofen in man, was achieved using a Chiralpak AD chiral stationary phase (CSP) (J.T. Baker, Milton, Keynes, UK). The elution order of the stereoisomers was determined to be 2′S,2R; 2′R,2R; 2′R,2S; 2′S,2S by a combination of stereoselective synthesis of diastereoisomeric mixtures and analysis of the two diastereoisomers isolated from human urine following the administration of (S)-ibuprofen. The individual stereoisomers were isolated by semipreparative chiral phase chromatography and characterized by circular dichroism spectroscopy. Chirality 9:75-87, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 5 (1993), S. 596-601 
    ISSN: 0899-0042
    Keywords: microbial metabolism ; chiral inversion ; chiral inversion of 2-phenylpropionic acid ; oxidation of ibuprofen ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The metabolism of (R,S)-ibuprofen has been investigated in 24 microbial cultures. Of these Cunninghamella elegans, Mucor hiemalis, and Verticillium lecanii catalyzed the oxidation of the drug to 2-[4-(2-hydroxy-2-methylpropyl)phenyl]propionic acid, a known mammalian metabolite. The extent of metabolism was greatest with V. lecanii, with some 47% of the substrate being consumed over a 7-day incubation period. Enantiomeric analysis indicated stereoselective metabolism of (R)-ibuprofen, the enantiomeric composition of the residual substrate being R/S = 0.25. Following a preparative scale incubation of (R,S)-ibuprofen with V. lecanii, in which the reaction was allowed to go to completion, the metabolite was found to be predominantly of the S-configuration (S/R = 2.1), suggesting that chiral inversion of either the drug and/or the metabolite had taken place. Analysis of extracts following incubation of (R,S)-, (R)-, and (S)-2-phenylpropionic acid with V. lecanii, for 21 days, indicated that chiral inversion of the (R)-enantiomer to its optical antipode had taken place. The results of these investigations indicate that microorganisms, in addition to mammals, are able to mediate the chiral inversion of 2-arylpropionic acids. This observation may have implications for the preparation of optically pure 2-arylpropionic acids. © 1993 Wiley-Liss, Inc.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0899-0042
    Keywords: cimetidine ; sulfoxidation ; urinary metabolite ; enantiomeric composition of cimetidine sulfoxide ; sequential achiral - chiral high-performance liquid chromatography ; preparative chromatographic resolution ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The individual enantiomers of cimetidine sulfoxide were resolved by preparative chromatography using a Chiralcel OC stationary phase and were characterized by the determination of optical rotation and circular dichroism spectra. Cimetidine sulfoxide was isolated from the urine of two healthy male volunteers following oral administration of cimetidine (400 mg). Urine was collected every 2 h for 12 h postdosing, after which time HPLC analysis indicated negligible recovery of the drug as the sulfoxide. Some 7% of the dose was recovered as cimetidine sulfoxide over this period. The enantiomeric composition of cimetidine sulfoxide was determined by sequential achiral - chiral chromatography using the OC phase. Over the collection period the enantiomeric ratio was found to be constant in all samples at (+/-) of 71 ± 2.5:29 ± 2.5. The enantiomeric composition of cimetidine sulfoxide was also determined in rat urine (24 h) following the administration of cimetidine (30 mg/kg po) to male Wistar rats (n = 7). The enantiomeric ratio in this case was found to be (+/-) 57 ± 2.3:43 ± 2.3. These preliminary data indicate that sulfoxidation of cimetidine is stereoselective with respect to the (+)-enantiomer and that species variation in enantiomeric composition occurs. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...