Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 2013-2015 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of surface passivation of undoped p-CdTe(100) by (NH4)2Sx treatment was investigated by using photoluminescence (PL), photoconductivity (PC), and x-ray photoelectron spectroscopy (XPS). After sulfur treatment for 2 min, the acceptor bound exciton (A0, X) peak increases greatly in the PL spectrum, and the minority-carrier lifetime of CdTe becomes the longest value in the PC measurement. The XPS spectrum for untreated CdTe shows the additional peaks on the right side of two main Te peaks corresponding to the Te 3d core levels, and these additional peaks are related to TeO3 with binding energies of 576.2 and 586.5 eV. After sulfur treatment, while the intensities of the Te 3d core levels decreased gradually, those of the TeO3 peaks disappear. In addition, the S 2p core-level spectra for sulfur-treated CdTe show the peaks at the 161.7 and 162.8 eV, which are attributed to a CdS formation at the surface of CdTe. These results indicate the sulfur effectively dissociates the native oxides from and neutralizes the dangling bonds at the surface of CdTe. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 80 (2002), S. 2767-2769 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Single-wall carbon nanotubes (SWNTs) were used to augment the thermal transport properties of industrial epoxy. Samples loaded with 1 wt % unpurified SWNT material showed a 70% increase in thermal conductivity at 40 K, rising to 125% at room temperature; the enhancement due to 1 wt % loading of vapor grown carbon fibers was three times smaller. Electrical conductivity data showed a percolation threshold between 0.1 and 0.2 wt % SWNT loading. The Vickers hardness rose monotonically with SWNT loading up to a factor of 3.5 at 2 wt %. These results suggest that the thermal and mechanical properties of SWNT-epoxy composites are improved, without the need to chemically functionalize the nanotubes. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...