Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 120 (1984), S. 225-232 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The intravesicular pH of intact rabbit reticulocytes was measured by two methods; one based on the intracellular:extracellular distribution of DMO (5, 5, dimethyl + oxazolidin-2,4-dione), methylamine, and chloroquine and the other by quantitative fluorescence microscopy of cell-bound transferrin. The latter method was also applied to nucleated erythroid cells from the fetal rat liver. A pH value of approximately 5.4 was obtained with both methods and in both types of cells. Treatment of the cells with lysosomotrophic agents, metabolic inhibitors, and ionophores elevated the intravesicular pH and inhibited iron uptake from transferrin. When varying concentrations of NH4Cl were used, a close correlation was observed between the inhibition of iron uptake and elevation of the intravesicular pH. At pH 5.4 iron release from rabbit iron-bicarbonate transferrin in vitro was much more rapid than from iron-oxalate transferrin. The bicarbonate complex donates its iron to rabbit reticulocytes approximately twice as quickly as the oxalate complex. It is concluded that the acidic conditions within the vesicles provide the mechanism for iron release from the transferrin molecule after its endocytosis and that the low vesicular pH is dependent on cellular metabolism.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...