Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Terminally differentiated PC12 cells are a useful neuron-like model for studying programmed cell death in response to nerve growth factor (NGF) deprivation. This in vitro model was used to investigate the mechanism by which cyanide-induced histotoxic hypoxia produces neuronal degeneration. Treatment of undifferentiated PC12 cells with 0.1 mM KCN for 24 h did not produce cell death. In contrast, treatment of differentiated PC12 cell cultures with 0.1 mM KCN for 24 h increased cell death by 43% when compared with control cultures, as measured by trypan blue dye exclusion and lactate dehydrogenase release assays. The Ca2+/Mg2+-dependent endonuclease inhibitor aurintricarboxylic acid and the transcriptional inhibitor actinomycin D partially attenuated hypoxic toxicity, suggesting roles for endonuclease activation and transcription in this model of neuronal death. Extracted DNA from cyanide-treated neurons demonstrated cleavage into oligonucleosomal fragments on gel electrophoresis. Transmission electron microscopic analysis showed morphological changes consistent with apoptotic cell death, including membrane blebbing and convolution, as well as chromatin condensation and margination to the nuclear membrane. Addition of either ascorbate or catalase to the cultures partially attenuated the loss of cell viability induced by cyanide, and decreased the incidence of apoptotic cells after treatment, based on the in situ detection of DNA strand breaks. The ability of cyanide to elevate intracellular oxidant species was determined by microfluorescence in differentiated PC12 cells loaded with the oxidant-sensitive dye 2′,7′-dichlorofluorescin. Exposure of cells to 0.1 mM KCN produced a rapid generation of oxidants that was blocked ∼50% by ascorbate or catalase. These observations indicate that cyanide induces apoptosis in terminally differentiated, and not undifferentiated, PC12 cells, and that antioxidants significantly reduce the incidence of cyanide-induced apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The differentiated PC12 cell neuronal model was used to determine the effect of trimethyltin (TMT) on protein kinase C (PKC). Cells treated with 5–20 µM TMT showed a partial and sustained PKC translocation within 30 min and persisted over a 24-h period. TMT treatment was accompanied by a low level of PKC down-regulation over 24 h, which was small compared with that produced by phorbol esters. Confocal imaging of differentiated PC12 cells showed that PKC translocates to the plasma membrane and the translocation is blocked by the PKC inhibitor chelerythrine (1 µM). Phorbol myristate-induced PKC down-regulation or inhibition with chelerythrine provided protection against TMT-induced cytotoxicity. It was concluded that TMT-induced PKC translocation and activation contribute to the cytotoxicity of TMT in differentiated PC12 cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Dopamine (DA) oxidation and the generation of reactive oxygen species (ROS) may contribute to the degeneration of dopaminergic neurons underlying various neurological conditions. The present study demonstrates that DA-induced cytotoxicity in differentiated PC12 cells is mediated by ROS and mitochondrial inhibition. Because cyanide induces parkinson-like symptoms and is an inhibitor of the antioxidant system and mitochondrial function, cells were treated with KCN to study DA toxicity in an impaired neuronal system. Differentiated PC12 cells were exposed to DA, KCN, or a combination of the two for 12-36 h. Lactate dehydrogenase (LDH) assays indicated that both DA (100-500 μM) and KCN (100-500 μM) induced a concentration- and time-dependent cell death and that their combination produced an increase in cytotoxicity. Apoptotic death, measured by Hoechst dye and TUNEL (terminal deoxynucleotidyltransferase dUTP nick end-labeling) staining, was also concentration- and time-dependent for DA and KCN. DA plus KCN produced an increase in apoptosis, indicating that KCN, and thus an impaired system, enhances DA-induced apoptosis. To study the mechanism(s) of DA toxicity, cells were pretreated with a series of compounds and incubated with DA (300 μM) and/or KCN (100 μM) for 24 h. Nomifensine, a DA reuptake inhibitor, rescued nearly 60-70% of the cells from DA- and DA plus KCN-induced apoptosis, suggesting that DA toxicity is in part mediated intracellularly. Pretreatment with antioxidants attenuated DA- and KCN-induced apoptosis, indicating the involvement of oxidative species. Furthermore, buthionine sulfoximine, an inhibitor of glutathione synthesis, increased the apoptotic response, which was reversed when cells were pretreated with antioxidants. DA and DA plus KCN produced a significant increase in intracellular oxidant generation, supporting the involvement of oxidative stress in DA-induced apoptosis. The nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester and the peroxynitrite scavenger uric acid blocked apoptosis and oxidant production, indicating involvement of nitric oxide. These results suggest that DA neurotoxicity is enhanced under the conditions induced by cyanide and involves both ROS and nitric oxide-mediated oxidative stress as an initiator of apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Trimethyltin (TMT) is a potent neurotoxic compound that initiates a delayed neuronal cell death. Previously we have shown that TMT-induced cytotoxicity is associated with protein kinase C (PKC) translocation and activation. The present study investigates the mechanism underlying TMT-stimulated PKC translocation in PC12 cells. TMT exposure led to a rapid increase in intracellular levels of inositol 1,4,5-trisphosphate (IP3), a product of phospholipase C (PLC). This was significantly decreased by pretreating cells with antagonists to either the cholinergic muscarinic receptor (atropine) or the glutamatergic metabotropic receptor [(+)-α-methyl-4-carboxyphenylglycine; (+)-MCPG]. Furthermore, the rise in IP3 level was blocked by pretreating cells with a PLC inhibitor (U-73122) or by a combination of atropine and (+)-MCPG. This pretreatment also significantly decreased TMT-stimulated PKC translocation, indicating that TMT-mediated PKC translocation was related to PLC activation, presumably through formation of diacylglycerol, an endogenous activator of PKC and product of PLC. It is interesting that atropine and (+)-MCPG did not provide protection against TMT-induced cytotoxicity in these cells. However, these data suggest that TMT causes the release of cellular constituents that activate G protein-coupled receptors, ultimately leading to PKC translocation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 81 (2002), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Cyanide induces apoptosis through cytochrome c activated caspase cascade in primary cultured cortical neurons. The underlying mechanism for cytochrome c release from mitochondria after cyanide treatment is still unclear. In this study, the roles of endogenous Bcl-2 proteins in cyanide-induced apoptosis were investigated. After cyanide (100–500 µm) treatment for 24 h, two pro-apoptotic Bcl-2 proteins, Bcl-XS and Bax were up-regulated as shown by western blot and RT-PCR analysis. The expression levels of two antiapoptotic Bcl-2 proteins, Bcl-2 and Bcl-XL, remained unchanged after cyanide treatment, whereas the mRNA levels of Bcl-XS and Bax began to increase within 2 h and their protein levels increased 6 h after treatment. NF-κB, a redox-sensitive transcription factor activated after cyanide treatment, is responsible for the up-regulation of Bcl-XS and Bax. SN50, which is a synthetic peptide that blocks translocation of NF-κB from cytosol to nucleus, inhibited the up-regulation of Bcl-XS and Bax. Similar results were obtained using a specific κB decoy DNA. NMDA receptor activation and reactive oxygen species (ROS) generation are upstream events of NF-κB activation, as blockade of these two events by MK801, l-NAME or PBN inhibited cyanide-induced up-regulation of Bcl-XS and Bax. Up-regulation of pro-apoptotic Bcl-XS and Bax contributed to cyanide-induced cytochrome c release, because SN50 and a specific Bax antisense oligodeoxynucleotide significantly reduced release of cytochrome c from mitochondria as shown by western blot analysis. It was concluded that NF-κB-mediated up-regulation of Bcl-XS and Bax is involved in regulating cytochrome c release in cyanide-induced apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of toxicology 59 (1986), S. 45-50 
    ISSN: 1432-0738
    Keywords: Toluene ; Chronic ethanol ; Liver triglycerides ; Hepatotoxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The hepatotoxic properties of concurrent chronic oral ethanol ingestion and acute toluene inhalation were evaluated. Male rats were maintained on ethanol-containing or control liquid diets for 29 days. Animals of each group were subjected to five 20-min exposures to 10 000 ppm toluene with 30 min of room air inhalation between exposures on days 22, 24, 26, and 28 of liquid diet feeding. Some of the ethanol-fed animals were withdrawn from ethanol 14 h before exposure. Ethanol-withdrawn animals displayed an increased sensitivity to the narcotic action of toluene. Animals were sacrificed and assays performed on day 29. Stress markers (plasma corticosterone, free fatty acid, and glucose) were not affected by treatments. A modest elevation in plasma aspartate aminotransferase occurred in non-withdrawn animals receiving both ethanol and toluene. Ethanol-toluene exposure increased both relative liver weight and liver triglycerides. Toluene antagonized the hypertriglyceridemia associated with chronic ethanol ingestion. This study indicates that combined ethanol and toluene exposure has minor potential to induce acute liver injury, but results in altered deposition of hepatic triglycerides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 19 (1994), S. 1289-1294 
    ISSN: 1573-6903
    Keywords: Cyanide ; Fos ; c-Jun, gene expression ; MK-801 ; excitatory amino acids ; neurotoxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of acute cyanide intoxication on levels of transcriptional regulatory proteins Fos and c-Jun in rat cortex, hippocampus, cerebellum and brain stem was studied. Western blot analysis showed a differential effect of cyanide on Fos levels in the selected brain areas. The most prominent changes were seen 60 min. following ip. injection of KCN in all brain areas except the brain stem, which showed the maximal change 120 min. following cyanide. Fos levels were doubled in cortex and cerebellum and decreased to below 70% of the control levels in hippocampus. Levels of c-Jun were not altered 60 min. following cyanide treatment. Pretreatment with the NMDA receptor antagonist, MK-801, prevented the cyanide-induced changes of Fos. The differential effect of cyanide on Fos levels in different brain areas and the blockade of these changes by MK-801 suggest involvement of multiple neuronal pathways, including the excitatory amino acid (EAA) neurotransmitter system. It is concluded that cyanide alters levels of the transcriptional regulatory protein Fos through activation of the EAA neurotransmitter system and, thus, may affect gene expression in neuronal or glia cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 19 (1994), S. 1319-1323 
    ISSN: 1573-6903
    Keywords: Cyanide ; NMDA receptor, hippocampal cell culture, cytosolic free calcium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of cyanide on NMDA-activated ion current and MK801 binding was studied in cultured rat hippocampal neurons. In microfluorometric analysis using fura-2, removal of extracellular Mg2+ resulted in a five-fold increase in NMDA-induced peak of [Ca2+]i. One mM NaCN enhanced the peak NMDA responses in the presence, but not in the absence of extracellular Mg2+. Cyanide enhanced the immediate rise in [Ca2+]i produced by NMDA, followed over a 1–5 min period by a gradual increase of [Ca2+]i. Similar results were obtained in whole-cell patch clamp recordings from hippocampal neurons. One mM KCN enhanced the NMDA-activated current in the presence, but not in the absence of extracellular Mg2+. This effect was independent of cyanide-mediated metabolic inhibition since the recording pipette contained ATP (2 mM). In binding assays NaCN (1 mM) increased the binding affinity of [3H]MK-801 to rat forebrain membranes in the presence of Mg2+, whereas in the absence of Mg2+, NaCN did not influence binding. These results indicate that cyanide enhances NMDA-mediated Ca2+ influx and inward current by interacting with the Mg2+ block of the NMDA receptor. The effect of cyanide can be explained by an initial interaction with the Mg2+ block of the NMDA receptor/ionophore which appears to be energy-independent, followed by a gradual increase in Ca2+ influx resulting from cellular energy reserve depletion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...