Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bioprocess engineering 18 (1997), S. 7-16 
    ISSN: 0178-515X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The morphology of filamentous organisms in submerged cultures varies between the pelleted and the dispersed forms depending on the strain of organism and the culture conditions. The dispersed form consists of branched and unbranched hyphae (freely dispersed form) and clumps (filamentous material in aggregates). In agitated systems, the choice of impeller geometry as well as the total power input determines the mechanical forces that might affect the morphology of filamentous species (e.g. by fragmentation) with simultaneous effects on their growth and productivity. To find out more about fragmentation of Penicillium chrysogenum caused by mechanical forces of different impeller types and agitation intensities, a population balance model has been developed. The projected area measured by image analysis was used to characterise the morphology (size) of the mycelia. In the model, the kinetics of mycelial fragmentation were expressed by a breakage rate constant K, which was assumed to be only dependent on the agitation conditions. The fragmentation rate was considered to follow a first order process in size (area) which was based on assumptions made for the mechanism of mycelial break-up, and work reported in the literature. Previously published mean and distributional data from off-line fragmentation experiments in ungassed vessels of sizes from 1.4 to 180 l were used to validate the model. For the first time a model has been found that is capable of fitting changes in mycelial morphology caused by mechanical forces generated by different impellers at various power inputs and scales. Besides the mean projected areas of the mycelia, the model allowed simulations of the projected area distributions, and changes in those distributions because of the agitation. At the small scale (1.4 l), the breakage rate constant K could be correlated well with either impeller tip speed or the “energy dissipation/circulation function”, which is based on mycelial circulation through the impeller region. The simpler but commonly used power input per unit tank volume did not correlate K adequately. The scale up data showed that only the “energy dissipation/circulation function” correlated mycelial fragmentation well. The dependence of K on biomass concentration, and its detailed dependence (if any) on the fermentation conditions at sampling, which might indicate likely breakage mechanisms, remain to be elucidated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology techniques 8 (1994), S. 853-858 
    ISSN: 1573-6784
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary It has been shown that a paraformaldehyde/glutaraldehyde/phosphate buffer saline fixative can be used to preserve vacuolation ofPenicillium chrysogenum hyphae from submerged cultures for later image analysis characterisation. After fixing, the proportion of the hyphase as vacuoles and empty cells (in several samples from different fermentations with different initial percentage vacuolations) did not change significantly over about 70h, and there were only minor changes towards smaller vacuoles in the vacuolation size distributions over the same period. This fixation method will permit the storage of vacuolated hyphae, for later analysis either for physiological studies or for dynamic studies of the links between hyphal vacuolation and fragmentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 672-684 
    ISSN: 0006-3592
    Keywords: mycelial morphology ; Penicillium chrysogenum ; image analysis ; impeller geometry ; energy dissipation rate ; circulation frequency ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The influence of the agitation conditions on the morphology of Penicillium chrysogenum (freely dispersed and aggregated forms) was examined using radial (Rushton turbines and paddles), axial (pitched blades, propeller, and Prochem Maxflow T), and counterflow impellers (Intermig). Culture broth was taken from a continuous fermentation at steady state and was agitated for 30 min in an ungassed vessel of 1.4-L working volume. The power inputs per unit volume of liquid in the tank, P/VL, ranged from 0.6 to 6 kW/m3. Image analysis was used to measure mycelial morphology. To characterize the intensity of the damage caused by different impellers, the mean total hyphal length (freely dispersed form) and the mean projected area (all dispersed types, i.e., also including aggregates) were used. [In this study, breakage of aggregates was taken into account quantitatively for the first time.]At 1.4-L scale and a given P/VL, changes in the morphology depended significantly on the impeller geometry. However, the morphological data (obtained with different geometries and various P/VL) could be correlated on the basis of equal tip speed and two other, less simple, mixing parameters. One is based on the specific energy dissipation rate in the impeller region, which is simply related to P/VL and particular impeller geometrical parameters. The other which is developed in this study is based on a combination of the specific energy dissipation rate in the impeller swept volume and the frequency of mycelial circulation through that volume. For convenience, the function arising from this concept is called the “energy dissipation/circulation” function.To test the broader validity of these correlations, scale-up experiments were carried out in mixing tanks of 1.4, 20, and 180 L using a Rushton turbine and broth from a fed-batch fermentation. The energy dissipation/circulation function was a reasonable correlating parameter for hyphal damage over this range of scales, whereas tip speed, P/VL, and specific energy dissipation rate in the impeller region were poor. Two forms of the energy dissipation/circulation function were considered, one of which additionally allowed for the numbers of vortices behind the blades of each impeller type. Although both forms were successful at correlating the data for the standard impeller designs considered here, there was preliminary evidence that allowing for the vortices would be valuable. © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3592
    Keywords: mycelia ; morphology ; vacuolation ; penicillin ; image analysis ; agitation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The influence of the agitation conditions on the growth, morphology, vacuolation, and productivity of Penicillium chrysogenum has been examined in 6 L fed-batch fermentations. A standard Rushton turbine, a four-bladed paddle, and a six-bladed pitched blade impeller were compared. Power inputs per unit volume of liquid, P/VL, ranged from 0.35 to 7.4 kW/m3. The same fermentation protocol was used in each fermentation, including holding the dissolved oxygen concentration above 40% air saturation by gas blending. The mean projected area (for all dispersed types, including clumps) and the clump roughness were used to characterize the morphology. Consideration of clumps was vital as these were the predominant morphological form.For a given impeller, the batch-phase specific growth rates and the overall biomass concentrations increased with agitation intensity. Higher fragmentation at higher speeds was assumed to have promoted growth through increased formation of new growing tips. The mean projected area increased during the rapid growth phase followed by a sharp decrease to a relatively constant value dependent on the agitation conditions. The higher the speed, the lower the projected area for a given impeller type. The proportion by volume of hyphal vacuoles and empty regions decreased with speed, possibly due to fragmentation in the vacuolated regions. The specific penicillin production rate was generally higher with lower impeller speed for a given impeller type. The highest value of penicillin production as well as its rate was obtained using the Rushton turbine impeller at the lowest speed.At given P/VL, changes in morphology, specific growth rate, and specific penicillin production rate depended on impeller geometry. The morphological data could be correlated with either tip speed or the “energy dissipation/circulation function,” but a reasonable correlation of the specific growth rate and specific production rate was only possible with the latter. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:762-775, 1998.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...