Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 22 (1982), S. 815-820 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The optical properties of thermally crystallized polyethylene terephthalate (PET) were investigated using the methods of small-angle light scattering, density, and haze measurements. The results indicate that the haze in crystallized PET results from scattering due to crystalline aggregates called spherulites. The formation of spherulites can lead to high levels of haze even at very low levels of crystallinity. A detailed analysis of polarized light-scattering patterns was employed in order to define the various structural parameters responsible for haze. The relationships between haze, crystallinity, spherulite size, and volume fraction of spherulites were developed for PET.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 24 (1984), S. 376-384 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper discusses the results of a detailed study of the relationships between molecular orientation, physical properties, and molecular weight of polyethylene terephthalate (PET), and their dependence on orientation variables. The molecular weight range of the samples used in this study included weight average molecular weights, Mw, between 29,000 and 65,000 which correspond to inherent viscosities, I.V., from 0.5 to 0.9. The orientation temperatures investigated were between 80 and 120°C. The extent of molecular ordering imparted by the orientation process was studied by birefringence, density, light scattering, and depolarized light intensity techniques. The results show that the degree of molecular orientation and the physical properties are strongly dependent on strain rate, extension ratio, molecular weight, and orientation temperature. The mechanical and transport properties, of PET are directly related to the degree of orientation as measured by birefringence. It is found that at a comparable level of orientation, the mechanical properties are also dependent on molecular weight, whereas the transport properties are independent of molecular weight. The degree of orientation varies according to the molecular weight of PET and stretch temperature. It is shown that for the same stretch ratio and stretch speed, the birefringence decreases with increasing stretch temperature. The light scattering results indicate that biaxial orientation of PET can lead to strain-induced crystallization. The amount and form of the crystalline structures are dependent on strain rate and orientation temperature.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 53 (1994), S. 411-423 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The environmental degradation of high-density polyethylene (HDPE) has been studied, in addition to that of HDPE blends, containing various concentrations of ethylene carbon monoxide copolymer. Extruded sheets of each material were exposed to natural Arizona sunlight for times up to 6 months. Exposed samples were then analyzed with respect to molecular weight, density, thermal behavior, mechanical properties, and infrared absorption. Additional samples were exposed to laboratory weathering conditions, evaluated in terms of property changes, melted, reformed, and then reevaluated without further weathering exposure. Results indicate that sunlight exposure causes decreased elongation to break, increased embrittlement, decreased molecular weight, and increased crystallinity. Environmental oxidative degradation is elucidated by the measurement of specific infrared bands, sensitive to the formation of carbonyl and vinyl end groups. As environmental degradation causes reductions of molecular weight, polymer chain mobility increases, leading to a higher degree of crystallinity. This increased crystallinity, along with the decreased molecular weight, accounts for the loss of ductility, indicated by a sharp decrease in ultimate elongation. The presence of carbon monoxide copolymer in the blended samples accelerates the process of environmental degradation, however, the degradation mechanisms appear to be similar to those observed for nonblended HDPE. © 1994 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 35 (1995), S. 1145-1154 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The physical aging characteristics of oriented poly(ethylene terephthalate) (PET), have been studied ad functions of storage time and temperature below the glass transition temperature (Tg) of PET. The free volume relaxation, associated with aging, has been characterized by the enthalpy at Tg, as measured by differential scanning calorimetry. The effects of the free volume relaxation on mechanical properties and the mode of failure have been investigated. It has been determined that a correlation exists between the enthalpy of relaxation and the ductile-to-brittle failure transition. Molecular orientation reduces significantly the enthalpy of relaxation, resulting in the disappearance of the ductile-to-brittle transition when highly oriented samples are aged over time. It has been established that a minimum amount of orientation is required to reduce or eliminate the effects of PET aging. Molecular orientation has also been found to reduce craze formation when oriented PET is exposed to a stress-cracking medium at constant stress.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 1341-1349 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The fabrication of poly(ethylene terephthalate), PET, into fibers, films, and containers usually involves molecular orientation caused by molecular strain, which may lead to stress- or strain-induced crystallization (SIC). The SIC of PET was studied by the methods of birefringence, density, thermal analysis, light scattering, and wide-angle X-ray. The development of crystallinity is discussed in relation to the rate of crystallization, the residual degree of orientation, and stress relaxation. The experimental procedure involves stretching samples at temperatures above the glass transition temperature, Tg, to a given extension ratio and at a specific strain rate of an Instron machine. At the end of stretching, the sample is annealed in the stretched state and at the stretching temperature for various periods of time, after which the sample is quickly quenched to room temperature for subsequent measurements. During stretching, the stress strain and the stress relaxation curves are recorded. The results indicate that the SIC of annealed, stretched PET can proceed in three different paths depending on the residual degree of orientation. At a low degree of residual orientation, as indicated by the birefringence value, annealing of stretched PET leads only to molecular relaxation, resulting in a decrease of birefringence. At intermediate orientation levels, annealing causes an initial decrease in birefringence followed by a gradual increase and finally a leveling off of birefringence after a fairly long period of time. At higher orientation levels, annealing causes a rapid increase in birefringence before leveling off. The interpretation of the above results is made using the measurements of light scattering, differential scanning calorimetry, and wide-angle X-ray. The rate of the SIC of PET is also discussed in terms of specific data analysis.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 26 (1986), S. 620-625 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Poly(ethylene terephthalate) (PET) is known to be a hygroscopic thermoplastic, which absorbs moisture from its environment at a rapid rate. The water absorption characteristics of PET as a function of relative humidity, exposure time, temperature, thickness, and molecular weight are reported here. Results indicate that absorbed moisture has significant influences on the physical properties of PET, leading to large decreases in the glass transition temperature, crystallization temperature, and degree of molecular orientation.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 638-643 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The intrinsic birefringence of rigid poly(vinyl chloride), PVC, was obtained from measurement of birefringence and infrared dichroism. Rigid PVC samples were stretched at temperatures above the glass-transition temperature, Tg, to various stretch ratios. The measured intrinsic birefringence obtained in this study is consistent with theoretically calculated and previously measured values using other techniques and samples. From the intrinsic birefringence, the principal polarizability differences of the PVC monomer were also calculated, and the results are comparable with those estimated from flow birefringence measurements of PVC dilute solutions.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 644-651 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The orientation characteristics and the physical properties of acrylonitrile copolymers are studied as a function of orientation temperature, stretch ratio, and rubber modification content. The mechanical, barrier, and thermal properties are evaluated and discussed with respect to the influence of rubber content on these properties. The data indicate unique differences in the orientation behavior of rigid and rubber-modified copolymers. An explanation of these differences is offered on the basis of microscopy and dynamic mechanical analysis.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...