Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Alpine metamorphism, related to the development of a metamorphic core complex during Cretaceous orogenic events, has been recognized in the Veporic unit, Western Carpathians (Slovakia). Three metamorphic zones have been distinguished in the metapelites: 1, chloritoid + chlorite + garnet; 2, garnet + staurolite + chlorite; 3, staurolite + biotite + kyanite. The isograds separating the metamorphic zones have been modelled by discontinuous reactions in the system K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH). The isograds are roughly parallel to the north-east-dipping foliation related to extensional updoming along low-angle normal faults. Thermobarometric data document increasing P–T conditions from c. 500 °C and 7–8 kbar to c. 620 °C and 9–10 kbar, reflecting a coherent metamorphic field gradient from greenschist to middle amphibolite facies. 40Ar/39Ar data obtained by high spatial resolution in situ ultraviolet (UV) laser ablation of white micas from the rock slabs constrain the timing of cooling and exhumation in the Late Cretaceous. Mean dates are between 77 and 72 Ma; however, individual white mica grains record a range of apparent 40Ar/39Ar ages indicating that cooling below the blocking temperature for argon diffusion was not instantaneous. The reconstructed metamorphic P–T–t path is ‘clockwise’, reflecting post-burial decompression and cooling during a single Alpine orogenic cycle. The presented data suggest that the Veporic unit evolved as a metamorphic core complex during the Cretaceous growth of the Western Carpathian orogenic wedge. Metamorphism was related to collisional crustal shortening and stacking, following closure of the Meliata Ocean. Exhumation was accomplished by synorogenic (orogen-parallel) extension and unroofing in an overall compressive regime.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1437-3262
    Keywords: Key words Granitoids ; U–Pb zircon dating ; Variscides ; Tatra Mountains ; Carpathians ; Cathodoluminescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract This study presents the first U–Pb zircon data on granitoid basement rocks of the Tatra Mountains, part of the Western Carpathians (Slovakia). The Western Carpathians belong to the Alpine Carpathian belt and constitute the eastern continuation of the Variscides. The new age data thus provide important time constraints for the regional geology of the Carpathians as well as for their linkage to the Variscides. U–Pb single zircon analyses with vapour digestion and cathodoluminescence controlled dating (CLC-method) were obtained from two distinct granitoid suites of the Western Tatra Mountains. The resulting data indicate a Proterozoic crustal source for both rock suites. The igneous precursors of the orthogneisses (older granites) intruded in Lower Devonian (405 Ma) and were generated by partial melting of reworked crustal material during subduction realated processes. In the Upper Devonian (365 Ma), at the beginning of continent–continent collision, the older granites were affected by high-grade metamorphism including partial melting, which caused recrystallisation and new zircon growth. A continental collision was also responsible for the generation of the younger granites (350–360 Ma). The presented data suggest multi-stage granitoid magmatism in the Western Carpathians, related to a complex subduction and collision scenario during the Devonian and Carboniferous.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...