Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The specific binding of [3H]GBR-12935 to membranes prepared from human caudate nucleus is saturable (Bmax 1.36 ± 0.18 pmol/mg protein), sodium dependent, and of high affinity (KD 2.34 ± 0.18 nM). Freezing of tissue from rat brain, or refrigeration followed by freezing, results in a small but significant (〈inlineGraphic alt="leqslant R: less-than-or-eq, slant" extraInfo="nonStandardEntity" href="urn:x-wiley:00223042:JNC617:les" location="les.gif"/〉20%) decrease in specific [3H]GBR-12935 binding when compared to the binding observed in fresh (nonfrozen) tissue, and this decrease may account, in part, for the differences in specific binding between rat and human brain membranes. Despite small differences in binding site density between fresh and frozen tissue there is a good correlation (r= 0.98; p 〈 0.01) between the potencies of a series of drugs in displacing specific [3H]GBR-12935 binding to human caudate membranes and rat striatum as well as in inhibiting dopamine uptake in rat striatal synaptosomes (r= 0.96; p 〈 0.01). The specific binding of [3H]GBR-12935 to membranes prepared from the caudate nuclei of patients with Parkinson's disease is decreased compared to membranes prepared from age-and sex-matched controls. These data suggest that [3H]GBR-12935 binds in a sodium-dependent fashion to the dopamine transport complex in human brain and that specific binding is decreased by a pathological degeneration of dopaminergic neurons to the caudate nucleus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effects of ethanol, glycine, and spermidine on the specific binding of [3H]MK-801 were characterized in Triton-treated membranes prepared from the hippocampus and cortex of ethanol-withdrawal seizure-prone (WSP) and -resistant (WSR) mice. Glycine, an allosteric agonist at the NMDA receptor-linked ion channel complex, caused an increase in specific [3H]MK-801 binding to hippocampal membrane preparations. There were no significant differences in EC50 values between the selected lines for the effect of glycine (WSP, 391.7 ± 48.4 nM; WSR, 313.4 ± 77 nM) in the presence of 10 µM NMDA or in the maximal response to the agonist (WSP, 1.75 ± 0.26 pmol/mg of protein; WSR, 1.67 ± 0.22 pmol/mg of protein). The EC50 values for the spermidine-induced increase in [3H]MK-801 binding in membranes from hippocampus in the absence (WSP, 11.7 ± 0.83 µM; WSR, 9.98 ± 1.29 µM) or in the presence of 10 µM glycine and 10 µM NMDA (WSP, 2.1 ± 0.35 µM; WSR, 2.37 ± 0.42 µM) also did not differ. Similar results were obtained in cortical membranes. Saturation isotherms indicated that there was no difference in the density of [3H]MK-801 binding sites, or in their affinity for the radioligand, between the mouse lines. In addition, administration of ethanol by inhalation (24 h) to WSP and WSR mice did not cause an increase in the density of [3H]MK-801 binding sites, and there was no difference in the density or affinity of binding sites between the mouse lines. Withdrawal from ethanol (6 h), which causes an increase in the severity of handling-induced convulsions in WSP mice, also did not alter the binding site density or affinity for radioligand. The results suggest that the characteristics of the NMDA receptor-linked ion channel complex in the tissue preparations described here do not differ in WSP and WSR mice. Thus, genetic differences in seizure susceptibility during ethanol withdrawal can be dissociated from the total density of hippocampal or cortex NMDA receptors under activating conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Subchronic treatment with haloperidol increases the number of asymmetric glutamate synapses associated with a perforated postsynaptic density in the striatum. To characterize these synaptic changes further, the effects of subchronic (28 days) administration of an atypical antipsychotic, clozapine (30 mg/kg, s.c.), or a typical antipsychotic, haloperidol (0.5 mg/kg, s.c.), on the binding of [3H]MK-801 to the NMDA receptor-linked ion channel complex and on the in situ hybridization of riboprobes for NMDAR2A and 2B subunits and splice variants of the NMDAR1 subunit were examined in striatal preparations from rats. The density of striatal glutamate immunogold labeling associated with nerve terminals of all asymmetric synapses and the immunoreactivity of those asymmetric synapses associated with a perforated postsynaptic density were also examined by electron microscopy. Subchronic neuroleptic administration had no effect on [3H]MK-801 binding to striatal membrane preparations. Both drugs increased glutamate immunogold labeling in nerve terminals of all asymmetric synapses, but only haloperidol increased the density of glutamate immunoreactivity within nerve terminals of asymmetric synapses containing a perforated postsynaptic density. Whereas subchronic administration of clozapine, but not haloperidol, resulted in a significant increase in the hybridization of a riboprobe that labels all splice variants of the NMDAR1 subunit, both drugs significantly decreased the abundance of NMDAR1 subunit mRNA containing a 63-base insert. Neither drug altered mRNA for the 2A subunit, but clozapine significantly increased hybridization of a probe for the 2B subunit. The data suggest that some neuroleptic effects may be mediated by glutamatergic systems and that typical and atypical antipsychotics can have varying effects on the density of glutamate in presynaptic terminals and on the expression of specific NMDA receptor splice variant mRNAs. Alternatively, NMDAR1 subunit splice variants may differentially respond to interactions with glutamate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: High-affinity and saturable binding sites for the diphenyl-substituted piperazine derivative [3H]GBR-12935 have been characterized in crude synaptosomal membranes prepared from rat brain. The specific binding of [3H]GBR-12935 is sodium-dependent and is unevenly distributed among various brain regions, with the highest concentration of binding sites being found in the corpus striatum and nucleus accumbens. Sodium-dependent [3H]GBR-12935 binding in all other brain areas was 10% or less of the binding found in the striatum. The affinity of [3H]GBR-12935 for binding sites in the striatum is increased in the presence of Na+ but other cations, including K+, Ca2+, or Mg2+, inhibit specific binding. There is an excellent correlation (r= 0.96, p 〈 0.01) between the potencies of a series of drugs in inhibiting [3H]GBR-12935 binding to striatal membranes and their potencies in inhibiting [3H]3,4-dihydroxyphenylethylamine ([3H]dopamine) uptake in synaptosomes. Agonists and antagonists of other neurotransmitter receptor or drug recognition sites have little or no effect on specific [3H]GBR-12935 binding to striatal membranes. In addition, prior intracerebroventricular administration of 6-hydroxydopamine results in a decrease in the number of specific [3H]GBR-12935 binding sites in the striatum. These data indicate that [3H]GBR-12935 is a selective radioligand of the presynaptic dopamine transport complex in brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Saturable and stereoselective binding sites for [3H]threo-(±)-methylphenidate were characterized in rat brain membranes. The highest density of [3H]threo-(±)- methylphenidate binding sites was found in the synapto somal fraction of corpus striatum. Scatchard analysis revealed a single class of noninteracting binding sites with an apparent dissociation constant (KD) of 235 nM and a maximum number of binding sites (Bmax) of 13.4 pmol/mg protein. Saturable, high-affinity binding of [3H]threo-(±)-methylphenidate to striatal synaptosomal membranes was dependent on the presence of sodium ions. A good correlation (r = 0.88; p 〈 0.001) was observed between the potencies of various psychotropic drugs in displacing [3H]threo-(±)-methylphenidate from these sites and their potencies as inhibitors of [3H]3,4-dihydroxyphenylethyl- amine ([3H]dopamine) uptake into striatal synaptosomes. A good correlation (r = 0.85; p 〈 0.001) was also observed between the potencies of a series of ritalinic acid esters in inhibiting [3H]threo-(±)-methylphenidate binding to striatal synaptosomal membranes and their potencies as motor stimulants in mice. These observations suggest that the binding sites for [3H]threo-(±)-methyl-phenidate described here are associated with a dopamine uptake or transport complex, and that these sites may mediate the motor stimulant properties of ritalinic acid esters such as methylphenidate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 75 (2000), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The present study characterized the effects of withdrawal from cocaine on the expression of NMDA receptor subunits (NR1, NR2B) and neuronal nitric oxide synthase. FosB induction was measured to confirm that repeated cocaine exposure influenced protein expression, as previously reported. Administration of cocaine followed by 24 h, 72 h, or 14 days of withdrawal resulted in alterations of NR1 and NR2B subunits and neuronal nitric oxide synthase expression as measured by immunohistochemical labeling of rat brain sections. Optical density analyses revealed significant up-regulation of NR1 in the ventral tegmental area at 72 h and 14 days of withdrawal. Structure-specific and withdrawal time-dependent alterations in NR2B expression were also found. After 24 h of withdrawal, cocaine-induced decreases in NR2B expression were observed in the nucleus accumbens shell, whereas increases in NR2B expression were found in medial cortical areas. Two weeks of withdrawal from cocaine caused an ∼50% increase in NR2B subunit expression in regions of the cortex, neostriatum, and nucleus accumbens. In contrast, cocaine-induced up-regulation of neuronal nitric oxide synthase was transient and evident in cortical areas only at 24 h after the last drug injection. The results suggest that region-specific changes in interactions among proteins associated with the NMDA receptor complex may underlie neuronal adaptations following repeated cocaine administration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: To determine if catechol-O-methyltransferase (COMT) metabolizes catecholamines within cell lines used for heterologous expression of plasmalemmal transporters and alters the measured characteristics of 3H-substrate transport, the uptake of monoamine transporter substrates was assessed in three cell lines (C6 glioma, L-M fibroblast, and HEK293 cells) that had been transfected with the recombinant human transporters. Uptake and cellular retention of 3H-catecholamines was increased by up to fourfold by two COMT inhibitors, tropolone and Ro 41-0960, with potencies similar to those for inhibition of COMT activity, whereas the uptake of two transporter substrates that are not substrates for COMT, [3H]serotonin and [3H]MPP+, was unaffected. Direct measurement of monoamine substrates by HPLC confirmed that tropolone (1 mM) increased the retention of the catecholamines dopamine and norepinephrine, but not the retention of serotonin in HEK293 cells. Saturation analysis of the uptake of [3H]dopamine by C6 cells expressing the dopamine transporter demonstrated that tropolone (1 mM) decreased the apparent Km of transport from 0.61 µM to 0.34 µM without significantly altering the maximal velocity of transport. These data suggest that endogenous COMT activity in mammalian cells may alter neurotransmitter deposition and thus the apparent kinetic characteristics of transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 32 (1989), S. 2261-2268 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 33 (1990), S. 809-814 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...