Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: New lightweight, high-strength porcelain bodies, using only nonplastic raw materials such as glass microspheres, quartz, and alumina cement, were fabricated and the effect of quartz particle size was investigated. Decreases in the green strength, relative to an increasing content of glass microspheres, were attributed to the decrease in the density and the relative decrease in the volume of alumina cement. The phases in the fired body were glass, α-quartz, cristobalite, anorthite, and a small amount of α-alumina. The large quartz particles (10–32 μm in size) could not be densified to closed porosity, because of underfiring, whereas smaller quartz particles (4–10 μm in size) permitted densification to closed porosity at 1300°C. The high flexural strength when using medium-sized quartz particles (6–20 μm, content of 30 wt%) was attributed to a stronger prestress and higher density that was due to better vitrification.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...