Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 62 (1993), S. 355-373 
    ISSN: 1573-2673
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The equivalent linear elastic fracture model based on an R-curve (a curve characterizing the variation of the critical energy release rate with the crack propagation length) is generalized to describe both the rate effect and size effect observed in concrete, rock or other quasibrittle materials. It is assumed that the crack propagation velocity depends on the ratio of the stress intensity factor to its critical value based on the R-curve and that this dependence has the form of a power function with an exponent much larger than 1. The shape of the R-curve is determined as the envelope of the fracture equilibrium curves corresponding to the maximum load values for geometrically similar specimens of different sizes. The creep in the bulk of a concrete specimen must be taken into account, which is done by replacing the elastic constants in the linear elastic fracture mechanics (LEFM) formulas with a linear viscoelastic operator in time (for rocks, which do not creep, this is omitted). The experimental observation that the brittleness of concrete increases as the loading rate decreases (i.e. the response shifts in the size effect plot closer to LEFM) can be approximately described by assuming that stress relaxation causes the effective process zone lenght in the R-curve expression to decrease with a decreasing loading rate. Another power function is used to describe this. Good fits of test data for which the times to peak range from 1 sec to 250000 sec are demonstrated. Furthermore, the theory also describes the recently conducted relaxation tests, as well as the recently observed response to a sudden change of loading rate (both increase and decrease), and particularly the fact that a sufficient rate increase in the post-peak range can produce a load-displacement response of positive slope leading to a second peak.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 69 (1994), S. 201-228 
    ISSN: 1573-2673
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper deals with determination of macroscopic fracture characteristics of random particle systems, which represents a fundamental but little explored problem of micromechanics of quasibrittle materials. The particle locations are randomly generated and the mechanical properties are characterized by a triangular softening force-displacement diagram for the interparticle links. An efficient algorithm, which is used to repetitively solve large systems, is developed. This algorithm is based on the replacement of stiffness changes by inelastic forces applied as external loads. It makes it possible to calculate the exact displacement increments in each step without iterations and using only the elastic stiffness matrix. The size effect method is used to determine the dependence of the mean macroscopic fracture energy and the mean effective process zone size of two-dimensional particle systems on the basic microscopic characteristics such as the microscopic fracture energy, the dominant inhomogeneity spacing (particle size) and the coefficients of variation of the microstrength and the microductility. Some general trends are revealed and discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Communications in Numerical Methods in Engineering 11 (1995), S. 347-353 
    ISSN: 1069-8299
    Keywords: assumed strain methods ; Hu-Washizu principle ; stress recovery ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An alternative justification of the B-bar procedure using the Hu-Washizu variational principle is presented. In contrast to previous work, the derivation starts from the three groups of algebraic equations (strain-displacement equations, stress-strain equations and equations of equilibrium) obtained by discretization of the Hu-Washizu functional. Based on an appropriate assumption, these equations can be manipulated to yield the element stiffness matrix in the form typical of the B-bar procedure. This approach directly leads to a stress-recovery formula different from the one suggested before. The theory is illustrated by application to a family of quadrilateral plane elements.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...