Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Cancer Genetics and Cytogenetics 73 (1994), S. 53-56 
    ISSN: 0165-4608
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied electrochemistry 26 (1996), S. 129-134 
    ISSN: 1572-8838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Composite materials with unique properties can be produced by codepositing an inert phase during a cathodic metal deposition process. The feasibility of codeposition is mainly determined by the interaction of the inert phase and the cathodically deposited metal. When both the inert phase and the cathode or the cathodically deposited metal are ferromagnetic substances, codeposition can be promoted by magnetizing the inert phase prior to codeposition. Codeposition of Zn with Ni particles on a steel cathode from a weakly acidic zinc chloride based bath was investigated. The increased interaction between the magnetically remanent Ni particles and the steel cathode resulted in substantially higher percentages of Ni included in the deposit layer, especially at low concentrations of Ni particles in the bath. The model of Guglielmi, modified for conducting particles, proved to be valid; the value of adsorption parameter k ad changed with magnetic remanency. Cathodic Zn deposition efficiency decreased with increasing concentration of Ni particles in solution and increasing Ni content in the deposit. The principle outlined can also be applied to systems with nonferromagnetic inert phases by coating these with ferromagnetic substances.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...