Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Feedback regulation (nodulation) ; Medicago (nodulation) ; Nodulation (spontaneous) ; Rhizobium ; Symbiosis (legume-Rhizobium)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A small subpopulation of alfalfa (Medicago saliva L.) plants grown without fixed nitrogen can develop root nodules in the absence of Rhizobium. Cytological studies showed that these nodules were organized structures with no inter- or intracellular bacteria but with the histological characteristics of a normal indeterminate nodule. Few if any viable bacteria were recovered from the nodules after surface sterilization, and when the nodular content was used to inoculate alfalfa roots no nodulation was observed. These spontaneous nodules were formed mainly on the primary roots in the region susceptible to Rhizobium infection between 4 and 6 d after seed imbibition. Spontaneous nodules appeared as early as 10 d after germination and emerged at a rate comparable to normal nodules. The formation of spontaneous nodules on the primary root suppressed nodulation in lateral roots after inoculation with R. meliloti RCR2011. Excision of spontaneous nodules at inoculation eliminated the suppressive response. Our results indicate that the presence of Rhizobium is not required for nodule organogenesis and the elicitation of feedback regulation of nodule formation in alfalfa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Scale insect ; Cochineal scale ; Hemocytes ; Coccid ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ultrastructural study of free circulating hemocytes in the adult cochineal scale,Dactylopius confusus (Cockerell), demonstrated five cell types: prohemocytes, typical granulocytes (T-granulocytes), oenocytoids, plasmatocytes, and granulocytes with modified sub-cellular structure to perform a special synthetic and secretory function, which we refer to as “modified granulocytes” (M-granulocytes). Prohemocytes showed undifferentiated sub-cellular structure of the basic stem cell type (i.e., high cytoplasmic density with numerous ribosomes, centrally located large nucleus with a distinct nucleolus, and poorly developed endoplasmic reticulum). The commonly observed typical granulocytes (T-granulocytes) had several smooth endoplasmic reticulum (SER) with dilated cisternae and many SER-derived membrane bounded granules of different sizes and electron density. Oenocytoids were identified by the presence of many crystals, RER-originated fine secretory granules, and an eccentric nucleus. Plasmatocytes were easily characterized by their variable shapes and irregular outline with pseudopodia-like cytoplasmic extensions, possession of an elongated lobed nucleus, multivesicular bodies, RER-derived membrane bounded, electron-dense, lysosomelike vacuoles, well-developed SER cisternae, and numerous pinocytic and SER-originated vesicles of different sizes along the peripheral region. M-granulocytes comprised the largest proportion of hemocytes in all samples observed. M-granulocytes were distinguished not only by the presence of membrane bounded granules of different sizes and electron density, but by the possession of large nuclei with distinct nucleoli, many mitochondria, and a highly developed network of rough endoplasmic reticulum (RER). M-granulocytes had abundant, rosette-shaped, RER-derived chains of fine secretory granules, which accumulated in the cytoplasm and vacuoles, and were ultimately deposited into the hemolymph by exocytosis. These fine granules gave a positive result with periodic acid-Schiff (PAS) test. Based on RER-synthesized fine secretory granules (M-granulocytes), their ultimate deposition into hemolymph, the red pigmentation of hemolymph, positive PAS histochemical test of these granules, and the high population of these hemocytes, no such cell type has been described in previous studies in insects. The sub-cellular structure of the granulocyte in this insect has been modified to perform a special synthetic and secretory function (i.e., possibly the synthesis of the red pigment found in hemolymph, which has been the source of commercially important cochineal dye).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Rhizobium meliloti ; Development ; Symbiosis ; Nitrogen fixation ; Ultrastructure ; Spontaneous nodule
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The development of spontaneous nodules, formed in the absence ofRhizobium and combined nitrogen, on alfalfa (Medicago sativa L. cv. Vernal) was investigated at the light and electron microscopic level and compared to that ofRhizobium-induced normal nodules. Spontaneous nodules were initiated from cortical cell divisions in the inner cortex next to the endodermis, i.e., the site of normal nodule development. These nodules, on uninoculated roots, were white multilobed structures, histologically composed of nodule meristems, cortex, endodermis, central zone and vascular strands. Nodules were devoid of intercellular or intracellular bacteria confirming microbiological tests. Early development of spontaneous nodules was initiated by series of anticlinal followed by periclinal divisions of dedifferentiated cells in the inner cortex of the root. These cells formed the nodular meristem from which the nodule developed. The cells in the nodule meristems divided unequally and differentiated into two distinct cell types, one larger type being filled with numerous membrane-bound starch grains, and the other smaller type with very few starch grains. There were no infection threads or bacteria in the spontaneous nodules at any stage of development. This size differentiation is suggestive of the different cell sizes seen inRhizobium-induced nodules, where the larger cell type harbours the invading bacteria and the smaller type is essential in supportive metabolic roles. The ontogenic studies further support the claim that these structures are nodules rather than aberrant lateral roots, and that plant possess all the genetic information needed to develop a nodule with distinct cell types. Our results suggest that bacteria and therefore theirnod genes are not necessarily involved in the ontogeny and morphogenesis of spontaneous and normal nodules in alfalfa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...