Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 86 (1987), S. 3886-3900 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The relationship between structure in the potential surface and classical mechanical observables is examined by means of functional sensitivity analysis. Functional sensitivities provide maps of the potential surface, highlighting those regions that play the greatest role in determining the behavior of observables. A set of differential equations for the sensitivities of the trajectory components are derived. These are then solved using a Green's function method. It is found that the sensitivities become singular at the trajectory turning points with the singularities going as η−3/2, with η being the distance from the nearest turning point. The sensitivities are zero outside of the energetically and dynamically allowed region of phase space. A second set of equations is derived from which the sensitivities of observables can be directly calculated. An adjoint Green's function technique is employed, providing an efficient method for numerically calculating these quantities. Sensitivity maps are presented for a simple collinear atom–diatom inelastic scattering problem and for two Henon–Heiles type Hamiltonians modelingintramolecular processes. It is found that the positions of the trajectory caustics in the bound state problem determine regions of the highest potential surface sensitivities. In the scattering problem (which is impulsive, so that "sticky'' collisions did not occur), the positions of the turning points of the individual trajectory components determine the regions of high sensitivity. In both cases, these lines of singularities are superimposed on a rich background structure. Most interesting is the appearance of classical interference effects. The interference features in the sensitivity maps occur most noticeably where two or more lines of turning points cross. The important practical motivation for calculating the sensitivities derives from the fact that the potential is a function, implying that any direct attempt to understand how local potential regions affect the behavior of the observables by repeatedly and systematically altering the potential will be prohibitively expensive. The functional sensitivity method enables one to perform this analysis at a fraction of the computational labor required for the direct method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 3577-3585 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We compare three time-dependent wave packet methods for performing elastic scattering calculations from screened Coulomb potentials. The three methods are the time-dependent amplitude density method (TDADM), what we term a Cayley-transform method (CTM), and the Chebyshev propagation method of Tal-Ezer and Kosloff. Both the TDADM and the CTM are based on a time-dependent integral equation for the wave function. In the first, we propagate the time-dependent amplitude density, ||ζ(t)〉=U||ψ(t)〉, where U is the interaction potential and ||ψ(t)〉 is the usual time-dependent wave function. In the other two, the wave function is propagated. As a numerical example, we calculate phase shifts and cross sections using a screened Coulomb, Yukawa type potential over the range 200–1000 eV. One of the major advantages of time-dependent methods such as these is that we get scattering information over this entire range of energies from one propagation. We find that in most cases, all three methods yield comparable accuracy and are about equally efficient computationally. However for l=0, where the Coulomb well is not screened by the centrifugal potential, the TDADM requires smaller grid spacings to maintain accuracy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 5039-5046 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In this paper we generalize earlier work on potential scattering to atom–rigid rotor scattering. We compare six approaches including the interaction picture, modified Cayley, amplitude density, and symmetric split operator methods. All methods derive from the integral equation form of the time-dependent Schrödinger equation. The methods were tested using the standard Lester–Bernstein model potential. All methods were found to perform well with the same parameters. Fast Fourier transforms were not used in these methods, and an average execution time for a 16 channel problem on CRAY YMP supercomputer was about 45 s. This single calculation yields results at any energy significantly contained in the initial packet. In the present study, the S matrix was computed at a total of 42 energies, but results could have been obtained at many more energies without a large increase in computing time. Timing results for one of the methods are reported for 25, 64, 144, and 256 coupled channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 5580-5585 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The time-dependent form of the Lippmann–Schwinger integral equation is used as the basis for a novel wave-packet propagation scheme. The method has the advantage over a previous integral equation treatment in that it does not require extensive matrix inversions involving the potential. This feature will be important when applications are made to systems where in some degrees of freedom the potential is expressed in a basis expansion. As was the case for the previous treatment, noniterated and iterated versions of the equations are given; the iterated equations, which are much simpler in the present new scheme than in the old, eliminate a matrix inversion that is required for solving the earlier noniterated equations. In the present noniterated equations, the matrix to be inverted is a function of the kinetic energy operator and thus is diagonal in a Bessel function basis set (or a sine basis set, if the centrifugal potential operator is incorporated into an effective potential). Transition amplitudes for various orbital angular momentum quantum numbers can be obtained from: (1) Fourier transform of the amplitude density from the time to the energy domain, and (2) direct analysis of the scattered wave packet. The approach is illustrated by an application to a standard potential scattering model problem.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 312-322 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: This paper describes a new approach to the study of atom–diatom reactive collisions in three dimensions employing wave packets and the time-dependent Schrödinger equation. The method uses a projection operator approach to couple the inelastic and reactive portions of the total wave function and optical potentials to circumvent the necessity of using product arrangement coordinates. Reactive transition probabilities are calculated from the state resolved flux of the wave packet as it leaves the interaction region in the direction of the reactive arrangement channel. The wave packet does not need to be propagated into the asymptotic reactive region in order to determine accurate vibrationally resolved, but rotationally summed reaction probabilities. The present approach is used to obtain such vibrationally resolved reaction probabilities for the three-dimensional H+H2 (J=0) hydrogen exchange reaction, using a body-fixed system of coordinates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 4167-4177 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The time-dependent form of the Lippmann–Schwinger integral equation is used as the basis of several new wave packet propagation schemes. These can be formulated in terms of either the time-dependent wave function or a time-dependent amplitude density. The latter is nonzero only in the region of configuration space for which the potential is nonzero, thereby in principle obviating the necessity of large grids or the use of complex absorbing potentials when resonances cause long collision times (leading, consequently, to long propagation times). Transition amplitudes are obtained in terms of Fourier transforms of the amplitude density from the time to the energy domain. The approach is illustrated by an application to a standard potential scattering model problem where, as in previous studies, the action of the kinetic energy operator is evaluated by fast Fourier transform (FFT) techniques.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 90 (1989), S. 5882-5884 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Converged vibrational state-resolved reactive scattering probabilities for the three-dimensional H+H2 exchange reaction, with total angular momentum J=0 have been obtained using a rotating (body) frame, time dependent quantal wave packet approach. The results are the first obtained by a numerically exact, fully quantal 3D wave packet approach, and yield close agreement with those obtained earlier by Zhang, Kouri, Haug, Schwenke, Shima, and Truhlar.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 96 (1992), S. 10102-10104 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Two large-scale yeast two-hybrid screens were undertaken to identify protein–protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0948-5023
    Keywords: Diagnostic imaging ; Contrast reagents ; Molecular modeling ; Chelate ; Molecular flexibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract We demonstrate the use of molecular dynamics and molecular mechanics methods to calculate properties and behavior of metal-chelate complexes that can be used as MRI contrast agents. Static and dynamic properties of several known agents were calculated and compared with experiment. We calculated the static properties such as the q-values (number of inner shell waters) and binding distances of chelate atoms to the metal ion for a set of chelates with known X-ray structure. The dynamic flexibility of the chelate arms was also calculated. These computations were extended to a series of exploratory chelate structures in order to estimate their potential as MRI contrast agents. We have also calculated for the first time the NMR relaxivity of an MRI contrast agent using a long (5 nsec) molecular dynamics simulation. Our predictions are promising enough that the method should prove useful for evaluating novel candidate compounds before they are synthesized. One novel static property, the projected area of chelate atoms onto a virtual surface centered on the metal ion (gnomonic projection), was found to give an effective measure of how well the chelate atoms use the free space around the metal ion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...