Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 261-263 (Apr. 2004), p. 735-740 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Molecular dynamics simulation of nanoindentation on Al(111) surface is presented. The simulation is performed using the Ercolessi-Adams glue potential and the Berendsen thermostat. Boundary conditions of 'pseudo' thin film are imposed in order to focus on the dislocation motion in ultra-thin film. Nucleation and development of defects underneath the indenter tip are visualized, and the gliding patterns of dislocation loops are investigated with particular emphasis on the effect of film thickness. Simulation results show that the early emission of dislocation loop is highlydependent on the film thickness
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Computational mechanics 26 (2000), S. 376-387 
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  In this study, a meshfree method called Reproducing Kernel Particle Method (RKPM) with an inherent characteristic of multi-resolution is modified to develop structural analysis algorithm using two scales. The shape function of RKPM is decomposed into two scales, high and low. The two scale decomposition is incorporated into linear elastic formulation to obtain high and low scale components of von Mises stresses. The advantage of using this algorithm is that the high scale component of von Mises stress indicates the high stress gradient regions without posteriori estimation. This algorithm is applied to the analysis of 2- and 3-dimensional stress concentration problems. It is important to note that the two scale analysis method has been applied to 3-dimensional stress concentration problem for the very first time. Also, the possibility of applying this algorithm to adaptive refinement technique is studied. The proposed method is verified by analyzing typical 2- and 3-dimensional linear elastic stress concentration problems. The results show that the algorithm can effectively locate the high stress concentration regions and can be utilized as an efficient indicator for the adaptive refinement technique.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 1655-1679 
    ISSN: 0029-5981
    Keywords: smooth particle hydrodynamics ; wavelets ; elastic-plastic large deformation ; tensile instability ; correction function ; aliasing control ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: This paper explores a Reproducing Kernel Particle Method (RKPM) which incorporates several attractive features. The emphasis is away from classical mesh generated elements in favour of a mesh free system which only requires a set of nodes or particles in space. Using a Gaussian function or a cubic spline function, flexible window functions are implemented to provide refinement in the solution process. It also creates the ability to analyse a specific frequency range in dynamic problems reducing the computer time required. This advantage is achieved through an increase in the critical time step when the frequency range is low and a large window is used. The stability of the window function as well as the critical time step formula are investigated to provide insight into RKPMs. The predictions of the theories are confirmed through numerical experiments by performing reconstructions of given functions and solving elastic and elastic-plastic one-dimensional (1-D) bar problems for both small and large deformation as well as three 2-D large deformation non-linear elastic problems. Numerical and theoretical results show the proposed reproducing kernel interpolation functions satisfy the consistency conditions and the critical time step prediction; furthermore, the RKPM provides better stability than Smooth Particle Hydrodynamics (SPH) methods. In contrast with what has been reported in SPH literature, we do not find any tensile instability with RKPMs.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 41 (1998), S. 1339-1362 
    ISSN: 0029-5981
    Keywords: multiresolution analysis ; wavelet ; multiple-scale decomposition ; adaptive reproducing kernel particle methods ; large shear deformation ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Reproducing Kernel Particle Method (RKPM) with a built-in feature of multiresolution analysis is reviewed and applied to large deformation problems. Since the application of multiresolution RKPM to the large deformation problems is still in its early stage of development, we introduce, in this paper, the concept of a multiple-scale measure which is a extension of the linear formulations to nonlinear problems. We also propose an appropriate measure to properly detect the high-scale response of a largely deformed material. Via this technique of multilevel decomposition of a reproducing kernel function, the high-scale component of the measure is used in deriving an adaptive algorithm by simply inserting extra particles. Numerical experiments for non-linear elastic materials are performed to demonstrate the completeness of multiple-scale Reproducing Kernel Particle Method. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 41 (1998), S. 137-166 
    ISSN: 0029-5981
    Keywords: meshless methods ; reproducing kernel particle methods ; large deformation ; non-linear elasticity ; underwater bubble dynamics ; reference configuration ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The explicit Reproducing Kernel Particle Method (RKPM) is presented and applied to the simulations of large deformation problems. RKPM is a meshless method which does not need a mesh structure in its formulation. Because of this mesh-free property, RKPM is able to simulate large deformation problems without remeshing which is often required for the mesh-based methods such as the finite element method. The RKPM shape function and its derivatives are constructed by imposing the consistency conditions. An efficient treatment of essential boundary conditions is also proposed for explicit time integration. The Lagrangian method based on the reference configuration is employed for the RKPM simulation of large deformation problems. Several examples of non-linear elastic materials are solved to demonstrate the performance of the method. The numerical experiment for the problem of underwater bubble explosion is also performed using the explicit Lagrangian RKPM formulation. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 1081-1106 
    ISSN: 0271-2091
    Keywords: multiple scale decomposition ; correction function ; multi-resolution analysis ; reproducing kernel function ; wavelet ; mesh- (or grid-) free particle methods ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new continuous reproducing kernel interpolation function which explores the attractive features of the flexible time-frequency and space-wave number localization of a window function is developed. This method is motivated by the theory of wavelets and also has the desirable attributes of the recently proposed smooth particle hydrodynamics (SPH) methods, moving least squares methods (MLSM), diffuse element methods (DEM) and element-free Galerkin methods (EFGM). The proposed method maintains the advantages of the free Lagrange or SPH methods; however, because of the addition of a correction function, it gives much more accurate results. Therefore it is called the reproducing kernel particle method (RKPM). In computer implementation RKPM is shown to be more efficient than DEM and EFGM. Moreover, if the window function is C∞, the solution and its derivatives are also C∞ in the entire domain. Theoretical analysis and numerical experiments on the 1D diffusion equation reveal the stability conditions and the effect of the dilation parameter on the unusually high convergence rates of the proposed method. Two-dimensional examples of advection-diffusion equations and compressible Euler equations are also presented together with 2D multiple-scale decompositions.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 1391-1415 
    ISSN: 0271-2091
    Keywords: meshless kernel particle method ; multiresolution analysis ; wavelets ; adaptivity ; computational fluid dynamics ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Multiresolution analysis based on the reproducing kernel particle method (RKPM) is developed for computational fluid dynamics. An algorithm incorporating multiple-scale adaptive refinement is introduced. The concept of using a wavelet solution as an error indicator is also presented. A few representative numerical examples are solved to illustrate the performance of this new meshless method. Results show that the RKPM is a good candidate for tackling the widespread large-scale problems in fluid dynamics. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...