Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Serum-free cultures of meningeal fibroblasts synthesize and release a chondroitin sulphate proteoglycan (CSPG) that markedly enhances survival but not adhesion of embryonic rat (embryonic day 15) neocortical neurons in vitro. The active molecule was purified from conditioned medium (meningeal cell-conditioned medium, MCM) in three steps by means of fast-performance liquid chromatography fractionation combined with a quantitative microphotometric bioassay: (i) preparative Q-Sepharose anion exchange chromatography under native conditions; (ii) rechromatography of biologically active Q-Sepharose fractions on a MonoQ column in the presence of 8 M urea; and (iii) final gel filtration of active MonoQ fractions on Superose 6 in the presence of 4 M guanidinium hydrochloride. Analytical sodium dodecyl sulphate-polyacrylamide gradient gel electrophoresis of active Superose 6 fractions revealed a single broad glycoprotein band with a molecular mass in the range of 220–340 kDa. Further characterization of the purified molecule with glycosaminoglycan:lyases revealed a core protein of 50 kDa and the nearly complete loss of neurotrophic activity after chondroitinase digestion, whereas heparitinase treatment changed neither electrophoretic mobility nor biological activity. Amino-terminal sequencing of the purified CSPG core protein revealed identity with the amino acid sequence of rat biglycan. Biglycan purified from bovine cartilage supported neuron survival with virtually the same activity as the CSPG purified from MCM (half-maximal activity ∼10-8 M). In conclusion, we isolated a neurotrophic CSPG from meningeal cells with strong survival-enhancing activity for brain neurons that was identified as biglycan, a molecule not previously related to neural functions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Recently we have shown that biglycan, a small chondroitin sulphate proteoglycan of the extracellular matrix, supports the survival of cultured neurons from the developing neocortex of embryonic day 15 rats. Here we investigate the structure-function relationship of this neurotrophic proteoglycan and show that chondroitin/dermatan sulphate chains are the active moieties supporting survival. Heparin, a highly sulphated glucosaminoglycan, is less active than the galactosaminoglycans (chondroitin-4-sulphate, chondroitin-6-sulphate and dermatan sulphate), whereas hyaluronic acid, an unsulphated glucosaminoglycan, does not support neuron survival. Galactosaminoglycans must be in direct contact with neurons to cause survival. Experiments with elevated potassium concentrations and antagonists of voltage-gated calcium channels exclude the involvement of membrane depolarization. However, genistein and an erbstatin analogue, which are inhibitors of tyrosine kinases with low specificity, abolished neuron survival in the presence of chondroitin/dermatan sulphate, whereas a selective inhibitor of neurotrophin receptor kinases (K252a) had no suppressive effect. Thus, yet unidentified tyrosine kinases are involved in the chondroitin/dermatan sulphate-dependent survival of neocortical neurons. In the embryonic stages of rat neocortical development chondroitin sulphate is mainly located in layers I, V and VI and the subplate. Chondroitin sulphate expression is maintained after birth, extends up to cortical layer IV on postnatal day 7, and is down-regulated until postnatal day 21 concomitant with the period of naturally occurring cell death. The latter observation is consistent with a putative role of chondroitin sulphate in the control of neuron survival during cortical histogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...