Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: C-S lyases in plants are involved in primary and secondary metabolism, and in glucosinolate-containing species may be involved in glucosinolate biosynthesis. Extracts from oilseed rape (Brassica napus) leaves were assayed for several C-S lyase activities. Four activities [using L-cystine, L-cystathionine, S-(2-benzothiazolyl)-L-Cys (SBC) and S-benzyl-L-Cys] were investigated in detail. All are developmentally regulated (highest in youngest leaves), and differentially inhibited by iodoacetamide, N-ethylmaleimide (NEM) and ethylenediaminetetraacetic acid (EDTA). Thermal stabilities and pH optima were also distinct. Competitive inhibition of the SBC lyase activity with a variety of sulphur-containing compounds indicated that cystine lyase contributes to SBC degradation, and this enzyme may cleave a wide range of compounds, both aliphatic and aromatic, but other ‘SBC lyases’ were also present. Putative aromatic glucosinolate intermediates were cleaved by the rape enzymes. Developmental and biochemical studies indicate that at least three classes of C-S lyase activity are present in rape leaves: cystathionine β-lyase, cystine lyase and a group of relatively non-specific lyases. C-S lyase preparations from other glucosinolate- and non-glucosinolate-containing species were capable of cleaving a number of aliphatic and aromatic conjugates. The highest activities were detected in glucosinolate-containing species and Allium cepa (onion). C-S lyase activities in non-glucosinolate-containing species (tobacco, Nicotiana tabacum, and barley, Hordeum vulgare) were much lower.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The NADPH-dependent conversion of amino acids to their aldoximes is an initial step in glucosinolate biosynthesis. A number of microsomal aldoxime-forming monooxygenase activities were detected in leaves from a variety of glucosi-nolate-containing species, whereas barley, bean and tobacco leaves did not contain any such activities. The substrates for these monooxygenases in each species largely correlated with the spectrum of glucosinolates found in that species. No activity was detected that metabolized homomethionine (supposed precursor of 2-propenylglucosinolate [sinigrin]), even in species where sinigrin was the major glucosinolate. In Sinapis species containing hydroxybenzylglucosinolate (sinalbin), activity with L-Tyr was detected, whereas Brassica species containing sinalbin had no such activity. However, these Brassicas did contain an L-Phe monooxygenase activity. Partial characterization of the monooxygenases indicated that in Brassica species, Nasturtium officinalis and Raphanus sativus these resembled the flavin-linked monooxygenases previously found in oilseed rape (Brassica napus) and Chinese cabbage (Brassica campestris). The L-Tyr-dependent activity in Sinapis species, and the L-Phe-dependent activity in Tropacolum majus, had characteristics of cytochrome P450-type enzymes. No similarity was found with any other known amino acid metabolizing enzymes (including decarboxylases, amino acid oxidases and diamine/polyamine oxidases).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Mitochondria require robust antioxidant defences to prevent lipid peroxidation and to protect tricarboxylic acid cycle enzymes from oxidative damage. Mitochondria from wild, salt-tolerant tomato, Lycopersicon pennellii (Lpa) did not exhibit lipid peroxidation in response to high salinity (100 mm NaCl), whereas those isolated from cultivated tomato, L. esculentum (Lem), accumulated malondialdehyde. The activity, intraorganellar distribution and salt response of mitochondrial ascorbate peroxidase (mAPX) differed dramatically in the two species. In Lem mitochondria, the majority (84%) of mAPX was associated with membranes, being located either on the inner membrane, facing the intermembrane space, or on the outer membrane. Total mAPX activity did not increase substantially in response to salt, although the proportion of matrix APX increased. In contrast, 61% of Lpa mAPX activity was soluble in the matrix, the remainder being bound to the matrix face of the inner membrane. Salt treatment increased the activity of all mAPX isoforms in Lpa, without altering their intramitochondrial distribution. The membrane-bound isoforms were detected in mitochondria of both species by western blotting and found to be induced by salt in Lpa. These observations suggest that matrix-associated APX isoforms could act in concert with other mitochondrial antioxidants to protect against salt-induced oxidative stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...