Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The tropical rainforest mesocosm within the Biosphere 2 Laboratory, a model system of some 110 species developed over 12 years under controlled environmental conditions, has been subjected to a series of comparable drought experiments during 2000–2002. In each study, the mesocosm was subjected to a 4–6 week drought, with well-defined rainfall events before and after the treatment. Ecosystem CO2 uptake rate (Aeco) declined 32% in response to the drought, with changes occurring within days and being reversible within weeks, even though the deeper soil layers did not become significantly drier and leaf-level water status of most large trees was not greatly affected. The reduced Aeco during the drought reflected both morphological and physiological responses. It is estimated that the drought-induced 32% reduction of Aeco has three principal components: (1) leaf fall increased two-fold whereas leaf expansion growth of some canopy dominants declined to 60%, leading to a 10% decrease in foliage coverage of the canopy. This might be the main reason for the persistent reduction of Aeco after rewatering. (2) The maximum photosynthetic electron transport rate at high light intensities in remaining leaves was reduced to 71% for three of the four species measured, even though no chronic photo-inhibition occurred. (3) Stomata closed, leading to a reduced ecosystem water conductance to water vapour (33% of pre-drought values), which not only reduced ecosystem carbon uptake rate, but may also have implications for water and energy budgets of tropical ecosystems. Additionally, individual rainforest trees responded differently, expressing different levels of stress and stress avoiding mechanisms. This functional diversity renders the individual response heterogeneous and has fundamental implications to scale leaf level responses to ecosystem dynamics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 27 (1998), S. 246-250 
    ISSN: 1432-0789
    Keywords: Key words Greenhouse gases ; Carbon balance ; Net primary production ; Carbon dioxide emission ; Sources and sinks of carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Determination of the C balance is of considerable importance when forecasting climate and environmental changes. Soil respiration and biological productivity of ecosystems (net primary production; NPP) are the basic components of the terrestrial C cycle. In this study, a previously made assessment of the annual CO2 flux from Russian soils was improved upon. CO2 emissions from Russian soils during the growing period were shown to represent, on average, 53–82% of the annual CO2 flux from Russian soils. The total annual CO2 flux from Russian soils was estimated at 4.50 Gt C (C source). The NPP of Russian ecosystems was estimated at 4.81 Gt C year–1 (C sink). Our calculations showed values of CO2 emissions and the C sink to be very close. This shows that, in general, terrestrial ecosystems are under steady state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: anthropogenic ; atmospheric deposition ; eutrophication ; fertilizer ; nitrogen ; nitrogen budget ; nitrogen fixation ; N:P ratio ; phosphorus ; pristine ; rivers ; temperate ; tropical
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr−1 out of a total for the entire North Atlantic region of 13.1 Tg yr−1 . On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km−2 yr−1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the major control over river nitrogen export in some regions such as the northeastern U.S. Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Doklady biological sciences 375 (2000), S. 610-612 
    ISSN: 1608-3105
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 23 (1984), S. 141-153 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract On the basis of the analysis of lands cape-agrogeochemical balance of N carried out in watersheds of four small rivers the input values were shown to be considerably higher than output values during the 10-yr period. This was due to an increase in mineral fertilizer application with no commensurate rise in the export of agricultural production from the regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 14 (1980), S. 23-27 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The N balance has been studied in detail in the basins of small rivers under agricultural management and forest use. The N content of the watershed territory of large forests was found to be practically balanced. In the river basin where the land was intensively farmed for 10 yr, N input increased five times through mineral fertilizers, and one-and-a-half times through organic fertilizers. Consequently, the amount of N returned to the atmosphere as a result of denitrification increased by one-and-a-half times, and that leached into the ground water, increased from 0.8 to 6.5 mg 1−1 N.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 16 (1981), S. 267-276 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The losses of nitrogen (NH4, NO3, Norg), phosphorus (Portho, Ppoly, Porg) and potassium (K+) from watershed areas of minor rivers, draining regions of different agricultural land use in the Oka Valley, U.S.S.R., were investigated. No N, P, and K pollution was shown in these watersheds, even though the rate of losses was found to be highly correlated with the amounts of mineral fertilizers and FYM applied. The losses were also determined by the natural soil fertility, erosion processes and soil texture under the similar level of fertilization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...