Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
Schlagwörter
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Process Safety Progress 16 (1997), S. 126-131 
    ISSN: 1066-8527
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Human supervisory control and monitoring of automated systems, as well as, passive system(s) information processing can all be classified as forms of out-of-the-loop (OOTL) performance. Whether the operator's task is to decide if process control intervention is necessary, detect a critical system event, or accept or reject the actions of a computer controller, he or she is removed from direct, real-time control of the system. OOTL performance is a critical issue in overall automated systems functioning because it is associated with numerous negative consequences including: (a) operator failure to observe system parameter changes and intervene when necessary (vigilance decrements); (b) human over-trust in computer controllers (complacency); (c) operator loss of system or situation awareness; and (d) operator direct/manual control skill decay. These consequences have been found to impact human performance under both normal operating conditions and system failure modes, with a greater effect on the latter [15] leading to serious problems in operator ability to perform their assigned tasks when working with automated systems.Level of automation (LOA) has been put forth as an approach to ameliorating OOTL performance problems. It is intended to determine the optimal assignment of control between a human operator and computer in order to keep both involved in system operations. LOA considers the capabilities and capacities of both the human and computer controller in determining their optimal coupling. It constitutes a systems approach to resolving OOTL performance problems by minimizing the negative consequences associated with the removal of the operator from active system control, and allows for the strengths of both human decision making and computer processing to be realized. When compared to a technological approach that assesses only the capabilities of the computer in allocating as much responsibility to the machine as possible, and assigning the remaining tasks to the human operator, the advantages can be considerable.A LOA taxonomy will be presented along with research examining its utility in a dynamic control task. Using LOA to identify optimal combinations of human and computer control was found to produce improvements in system performance under intermediate levels. These levels involve joint human and computer control of various system functions, such as monitoring, planning, and option selection and implementation. Results indicated decreases in the number of system processes/tasks overlooked by operators. These improvements may translate into cost reductions due to improved operational safety and are anticipated to be applicable to process control operations.
    Zusätzliches Material: 1 Tab.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Process Safety Progress 17 (1998), S. 43-48 
    ISSN: 1066-8527
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: This paper defines situation awareness (SA) and discusses its importance to operator-machine system safety and functioning in the context of process control activities. Specifically, identified are relationships of human detection of critical process cues converying the status of automated control systems and operator interpretation of the meaning and relevance of such information to the potential for negative incidents in chemical processing. Beyond individual operator SA in interacting with control systems, intra- and inter- work team SA are discussed for supporting individual attainment of process control responsibilities. Factors critical to team SA are discussed. “Road blocks” to team SA are also analytically examined. Lastly, methods for assessing individual and team SA are reviewed and vehicles for relating outcomes of these methods to changes in process control operator and team behavior to improve human-machine system safety and performance are relayed.
    Zusätzliches Material: 1 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...