Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 426-432 (Aug. 2003), p. 3499-3504 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 277 (1999), S. 1058-1064 
    ISSN: 1435-1536
    Keywords: Key words Contact angle ; Fluorosurfactant ; Hydrophilicity ; Protein adsorption ; Wetting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Generally, the apolar/polar surface is probed by water-wetting, which is measured using a method such as the sessile liquid drop method. However, when one tries to measure the wetting of a surface where biological macromolecules are adsorbed, there is the problem of a change in conformation due to drying the surface; hence, using this method in situ information cannot be obtained. We have developed a new method that can be used to measure the wettability of the adsorbed protein surface without drying. This method, the dropping time method, which is based on measuring the dropping time of a film of liquid along a protein-covered surface when this surface is instantaneously vertically removed from the protein solution. The adsorption behavior of four proteins (albumin, lysozyme, β-lactoglobulin, ovalbumin) on the surface of silica glass that has been treated with various fluorosurfactants is studied using this method. At a high concentration of protein, the surfaces of adsorbed proteins of any kind are fairly hydrophilic on glass treated with all fluorosurfactants. At a lower concentration of protein, the hydrophilicity of the protein layer depends on the kind of fluorosurfactant and also on the protein adsorption process. The apolar glass surface becomes more hydrophilic with increasing dipping time in the protein solution. On the other hand, the hydrophilic glass surface shows a complex change in the hydrophilicity with elapsed time after dipping it into a solution of albumin or lysozyme, i.e., the hydrophilicity decreases in the early stage of the adsorption and then increases with proceeding adsorption.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The amorphization process during mechanical alloying (MA) was investigated for the Al-50at%Ti and Al-50at%Ti-10vol%TiB2 powder mixtures. Pure metallic powders of Al and Ti were finely mixed and transformed to the amorphous phase after being milled for about 2880 ks. In the case of Al-50at%Ti-10vol%TiB2 powder, the amorphous alloys with a fine dispersion of TiB2 particles could be obtained for a shorter milling times than that required for the powders without TiB2 ceramics. As a result of heat treatment for the mechanically alloyed amorphous powders, a nanocrystalline intermetallic compound of TiAl (γ) could be produced. Subsequent grain growth of the γ phase during heat treatment was investigated by estimating the grain-growth exponent and the activation energy for grain growth. It was found from this estimation that the grain growth was further suppressed as the powders were mechanically alloyed for longer times. Furthermore, the addition of the TiB2 particles that could be dispersed during MA finely and homogeneously in the amorphous matrix was found to be effective for suppression of the γ grain growth especially at elevated temperatures as well as for a long annealing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...